

T.P.S. REPORT

COVER SHEET

Prepared By: Carly Geehr, Peter Rubin and Ted Sweet________

Date: 2007-12-07___

Device/Program Type: Stapler Game for ME 218A_________

Vendor: Stanford University________________________________

Project Start Date: 11-05-2007_____________________________

Project Completion Date: 12-07-2007________________________

CONFIDENTIAL

PURPOSE OF REPORT

This report provides detailed information on the
mechanical, electronic and software related elements of the
Stapler Game. The information should be enough to allow
someone with knowledge of mechatronics to be able to
replicate the game. However, this game is quite complicated
so beware that replicating it will be a daunting task.

The pages that follow are primarily concerned with the
technical information of the game. For a description of
the game and how one plays it, please see the website.

MECHANICS

CHASIS

Every good penny arcade game starts with a solid, well
built chassis as a foundation. The Stapler Game features
such a chassis. This chassis is not only strong but is
also aesthetically interesting. The chassis is intended to
look like an office cubical with exaggerated perspective.
When one approaches the Stapler Game, they feel as though
they have just sat down at a stereotypical desk in a
stereotypical cubical.

The chassis was constructed primarily our of masonite
fiberboard and plywood, which was cut both using a laser
cutter and hand tools. The technical drawings below show
the rough size of the chassis and the layout of the various
components on the chassis.

STAPLERS

The primary user input in the game is the staplers. The
staplers are unmodified Swingline staplers. A limit switch
is mounted on the underside of each stapler to sense when
the staplers are pressed. There are also tape sensors
mounted behind the staplers which can sense when the
stapler has been opened. A single LED is mounted below
each stapler to alert the player they should be stapling
during play. All of these components are mounted to a
laser cut stack of acrylic sheets. These sheets have
mounts for all of the various components and the staplers.
They are also transparent, so the acrylic appears to glow
when the LED is turned on. The drawing below shows how all
of the components fit together.

PAPERSTACKS

The “stacks of paper” at the rear of the desk are the main
indication to the player of how much progress that have
made in the game. Although it may appear that that there
are actual stacks of paper, there are not. As shown in the
drawings below, the “stacks of paper” are just cardstock
facades mounted on to a rack and pinion mechanism that
makes them rise and fall.

There is a linear cam mechanism which actuates a limit
switch when the stack is at either its top or bottom limit.

Linear Cam Functionality

Rack and Pinion and Linear Cam

BUSINESS CARD DISPENSER

At the end of the game, the business card dispenses
business cards to the players as a prize. The dispenser
uses two DC motors to deliver the cards. One of the motors
powers a foam wheel which feeds the cards from a caddy to
the next stage of the dispenser. The other motor powers
and acrylic wheel which functions as a flywheel to launch
the cards up into the air.

Side View

POPUPS (BOSS AND ERGONOMIST)

During game play, the players are visited by both their
boss and their ergonomist. These “visits” are facilitated
by a servo motor which rotates an arm that has an image of
a boss on one side and an image of an ergonomist on the
other. The servo only has a rotational range of 90
degrees, yet 180 degrees are needed to account for the
three possible displays: the boss, the ergonomist or
nothing. There are laser cut gears to gear up the servo so
that there is a full 180 degrees of rotation.

ELECTRONICS

OVERVIEW

The Stapler Game uses all of the I/O pins on the C32
microcontroller. The diagram below shows what each pin on
the C32 is used for. As the diagram shows, the pins feed
into a variety of different circuits which have a variety
of functions.

STAPLERS

Each stapler is equipped with a limit switch (for sensing
when the stapler has been pressed) and a tape sensor (for
sensing when the stapler has been opened). The tape sensor
is a packaged device that contains an infrared LED and a
phototransistor. On the detection side, the circuit
features a comparator with hysteresis implemented to get a
clean digital signal. The hysteresis was adjusted so that
the output to the C32 changed states when the stapler was
within 1/8 inch of the tape sensor.

The limit switch circuit has a pull down resistor so that
the output to the C32 is pulled down to 0 V when the
stapler is no depressed. However, when the stapler is
depressed the limit switch is closed and the output changes
state.

PAPERSTACKS

The paperstacks are raised and lowered using a geared DC
motor. The motor is controlled using a motor driver chip
(LM293B) in an H-Bridge configuration with protection
diodes. One output from the C32 is used as a PWM signal to
the driver and another output is used to control the
direction of the motor. A hex inverter is used to invert
the direction signal so that a single output from the C32
can be used to control the two inputs to the motor driver.

A limit switch is used to detect when a stack has reached
either the top or bottom of its travel. A debouncing
circuit (consisting of low-pass filter and hex inverter) is
used to eliminate noise when the switch is actuated.

PRIZE MOTORS

The motors used to administer the business cards are
controlled using a motor driver (LM293B) and a half H-
bridge circuit with diode protection. A half H-bridge was
used because the motors only spin one direction.

BOSS/ERGO SERVO

The servo which raises and lowers the boss and ergonomist
is controlled by a very simple circuit. The servo is
connected to 5 V and ground and is given a PWM signal
directly from the C32 which sets the position of the servo.

LED’s

The game contains many LED’s to alert the players of what
is going on in the game. Each of the LED circuits are
controlled by an n-channel mosfet (2N7000) with a signal
from the C32 connected directly to the gate of the mosfet.
Each circuit has a different number of LED’s so each
circuit has a different size resistor to limit the current
through the LED’s.

LEVEL SELECT

A potentiometer is used to allow the players to select the
difficulty of the game. The signal from the potentiometer
is connected to an analog-to-digital input on the C32, so
the position of the potentiometer can be sensed.

SOFTWARE

Below is the pseudo code for the software that runs the
game. The actual code is written in C and is attached as
Appendix A.

Play.c – Main Event Checker Module

Main() {
 Perform main initialization sequence
 Initialize reset once
 Run main event checker in an endless loop
}

Main Event Checker (runs continuously throughout the game, handles all
game states) {

Check for interrupts and refresh continuous state variables
Check which game stage we’re in:
{
If we’re in RESET mode:
If mechanical elements are in place and no longer moving, you're
done resetting. Wait for coin!

 Initialize waitcoin
 Turn off all LEDs
 Go to waitcoin stage

If we’re in WAITCOIN mode:
 When a coin is sensed, initialize waitstart
 Go to waitstart stage

If we’re in WAITSTART mode:
 check the level
 When the start button is pressed, initialize pregame
 Go to the pregame stage

If we’re in PREGAME mode:
 If all mechanical elements are done moving
 Initialize the game, go to game stage

If we’re in GAME mode:
 Check for winner. If there is one, end the game.

 Check which level we’re on:

if EASY:

 If player 1 has stapled
 Increment score
 Update paper stack 1 position

 If player 2 has stapled
 Increment score
 Update paper stack 2 position

if MEDIUM:
 If player 1 has staples left
 if player 1 has stapled
 Increment score
 Update position of paper stack
 If they are out of staples, do nothing until they reload
 Illuminate the reload light only
 if player reloads
 Illuminate the stapler lights only

 If player 2 has staples left
 if player 2 has stapled
 Increment score
 Update position of paper stack
 If they are out of staples, do nothing until they reload
 Illuminate the reload light only
 if player reloads
 Illuminate the stapler lights only

If HARD:
 One of three scenarios:

1) If it's past time for the ergonomist to show up and she
hasn't already come
 Set ergo flag high
 Start timer so we know when to put her away
 Pop her up!
 Set “gotcha” flags to zero for both players

2) If ergo has already wreaked her havoc OR if she hasn’t shown
up yet, we treat it like it's MEDIUM
 If player 1 has staples left
 if player 1 has stapled
 Increment score
 Update position of paper stack
 If they are out of staples, do nothing until they reload
 Illuminate the reload light only
 if player reloads
 Illuminate the stapler lights only

 If player 2 has staples left
 if player 2 has stapled
 Increment score
 Update position of paper stack
 If they are out of staples, do nothing until they reload
 Illuminate the reload light only
 if player reloads
 Illuminate the stapler lights only

3) If ergo is present and is in the process of wreaking havoc
 If the grace period has expired, we can punish the players
 If player 1 has stapled

If gotcha flag is low, they haven’t been punished yet,
so punish them! ha!

 Decrement score
 Move paper stack up
 blink their stapler!
 Gotcha flag goes high
 If player 2 has stapled

If gotcha flag is low, they haven’t been punished yet,
so punish them! ha!

 Decrement score
 Move paper stack up
 blink their stapler!
 Gotcha flag goes high
 If ergo time has expired, is done wreaking havoc
 put the management away
 relight both staplers

if we’re in POSTGAME mode:
 dispense the prize
 When the prize has been successfully dispensed, reset the
game!
 Go to reset stage

}

RunChecks (handles checking of all continuously monitored states) {
 If reset button has been tripped
 Reset the game
 Game stage is now RESET
 Blink any LEDs that need blinking
 Stop any paper stacks that have hit their limit switches
}

Initialize main game (only run once at beginning of game) {
 Initialize timer
 Initialize PWM, set period to 20ms
 Initialize AD ports
 Set all M ports to inputs
 Set all T ports to outputs
 Start with all bits off
}

Initialize reset game stage {
 Set paper stacks to bottom position
 Set coin inserted flag to zero
 Turn off all LEDs
 Put boss + ergo away
}

Initialize waitcoin game stage {
 Illuminate paycheck slot only
}

Check for coin {
 Get current state of coin sensor
 Return a 1 if coin has been detected
}

Initialize waitstart stage {
 Illuminate start light only
}

Initialize pregame stage {
 Set both paper stacks to top position
 Set scores to zero
 Refill staplers
 Turn all lights off
}

Initialize game stage {
 Illuminate staplers only
 If difficulty is hard
 set ergo surprise timer
 set ergo presence flag low
}

Initialize postgame sequence {
 Set player with highest score to “winner”
 Flash their stapler
 Boss emerges
 Initialize prize dispenser
}

IsWinner (returns true if a player has won) {
 Determine if any player’s score exceeds that of the winning score
for the level they’re playing
 Return true if a player has won

}

Paper.c – Module to control paper stack movement +
positioning

SetPopup (given a paper stack ID and position, moves the stack to that
position) {
 If it’s already moving, do nothing
 If it’s going to the minimum position:
 If it’s already there, don’t do anything
 Otherwise, plow down until you hit the limit switch
 Update the position array for that paper stack
 If it’s going to the maximum position:
 If it’s already there, don’t do anything
 Otherwise, plow down until you hit the limit switch
 Update the position array for that paper stack
 Otherwise, if it’s going somewhere in between the max and min
 If the final position is higher than where we are right now
 Set motor direction to UP

Calculate how long to turn on the motor to reach
destination

 If the final position is lower than where we are right now
 Set motor direction to down

Calculate how long to turn on the motor to reach
destination

 Turn on the motor for the calculated period of time
 Update paper position array
}

Check all popups for arrival (returns true if all paper stacks are done
moving) {
 If stack one and stack two are not moving, return true
}

Check popup for arrival (given a motor ID, tells us whether it’s moving)
{
 If paper stack is moving
 If it has hit the limit switch
 If direction is DOWN
 Update paper position array to MIN
 If direction is UP
 Update paper position array to MAX
 Stop the motor
 If the motor timer has expired
 Stop the motor
 Return true
}

Calculate move duration (given incremental change in position, motor ID,
and direction, returns length of time motor should be turned on) {

Calculate percentage of total range of motion motor needs to cover
 If direction is UP

Return percentage * total number of ticks to get from bottom
to top

 If direction is DOWN
Return percentage * total number of ticks to get from top to
bottom

}

Start motor {
 If direction is UP
 Set direction bit HI
 Turn motor on
 If direction is DOWN
 Set direction bit LO

 Turn motor on
 If direction is 0
 Stop the motor
 Update paper moving array
}

At limit (returns state of limit switch) {

If paper stack limit switch is HI, it’s in the middle of travel,
return FALSE

 Else return TRUE
}

Just Hit Limit (returns true if there has been a state change in the
limit switch since the last check) {

If the last limit hit isn’t the same as the current limit state
we’re in, we know there’s been a change in state

Set the current limit state to the one we’re in (zero if
we’re not at a limit)

 If we’re at a limit now, return true
}

Interface.c – UI functions

Get Level (returns the level as set by the pot) {
 Read the pin the pot is connected to
 If it’s between the limits set for EASY, return EASY
 If it’s between the limits set for MEDIUM, return MEDIUM
 Else return HARD
}

Initialize prize dispensing {
 Start timer for flywheel warmup
 Turn on flywheel
}

Check for prize dispensing (returns true if dispensing is complete) {
 If flywheel isn’t ready yet
 If flywheel timer has expired
 Set dispenser timer
 Set flywheel to ready
 Turn on dispenser motor
 Return false
 If the prize dispensed state is low
 Check for expired prize dispenser timer
 If timer’s up
 Prize dispensed state goes high
 Turn off both flywheel and dispenser motor
 Return false
 If the timers have both expired
 Set both flags low
 Return true
}

Reset button tripped (returns true if start button has been held down
for set length of time to reset game) {
 If the button is down and it wasn’t last time we checked
 Set timer for length of time we need for a reset
 Set button down flag high
 Return false
 If the bit is no longer high, but our flag hasn’t been updated

update the flag, Return false
 If the button isn’t down
 Set flag low, Return false
 If the button is down and we’ve been holding it there
 Check if the timer has expired
 If it has, return true
}

LED.c – Module for controlling all LEDs

Control LED (this turns a given LED on, off, or to blinking) {
 If state is ON
 Set blinking flag to 0
 Turn that LED on
 If state is OFF
 Set blinking flag to 0
 Turn LED off
 Else, we must be blinking
 Set blinking flag high
 Blink that LED
}

Blink LED (uses an array of states to control blinking) {
 Check if blink timer needs initializing
 If it does, initialize it
 If the timer has expired, we need to change the state of the LEDs
 Cycle through each LED
 If its state is set to blink
 If it was on before, turn it off
 Otherwise, turn it on
 Reset the timer
}

Turn off LED (takes a light ID, sets that bit LO)

Turn on LED (takes a light ID, sets that bit HI)

Turn all off {
 Cycles through each light ID
 Turns off that LED
}

Servo.c – Module to control servo

Set Servo Angle (sets the angle of the servo to the specified angle) {
 Convert the angle to a duty cycle quantity
 If the angle is set to the ergo angle, set the ergo flag high
 Otherwise, set that flag low
 Set the duty cycle of the servo to the calculated value
}

Convert angle to duty (returns the duty cycle scaled between the min and
max values according to the specified angle)

Management away (returns the servo to the neutral angle)

Stapler.c – Module for stapler I/O

Check staple press (given a player number, returns if they’ve stapled or
not)
 For player 1:
 If the stapler switch is down and this is a new state
 Update state

If we’re above level EASY, decrement staples in
stapler

 Return 1
 If the stapler is not down and the current state is high
 The stapler has been released! Update state variable
 For player 2:
 If the stapler switch is down and this is a new state
 Update state

If we’re above level EASY, decrement staples in
stapler

 Return 1
 If the stapler is not down and the current state is high
 The stapler has been released! Update state variable
}

Has reloaded (returns true if given player has reloaded stapler) {
 For player 1:
 If the player needs to reload
 Check for stapler opening, set state variable
 Check for stapler closing, set state variable
 If both conditions satisfied
 Refill stapler
 Reset all flags
 Return 1
 For player 2:
 If the player needs to reload
 Check for stapler opening, set state variable
 Check for stapler closing, set state variable
 If both conditions satisfied
 Refill stapler
 Reset all flags
 Return 1
}

Refill Staplers {
 Set player 1 staples left to max
 Set player 2 staples left to max
 Reset reload flags
}

Check Stapler (returns true if the stapler has been opened or closed,
helper for reload function) {
 If player 1:
 If OPEN:
 If the stapler is open and this is a new state
 Set open flag to high
 Return 1
 If CLOSED

If the stapler is closed and this is a new state
 Set closed flag to high
 Return 1

 If player 2:
 If OPEN:
 If the stapler is open and this is a new state
 Set open flag to high
 Return 1
 If CLOSED

If the stapler is closed and this is a new state
 Set closed flag to high
 Return 1

}

Used a staple (handles player decrementing staples count) {
 If player 1:
 If the number of staples left is less than 1,
 Set reload needed flag high
 Else, decrement staple count
 If player 2:
 If the number of staples left is less than 1,
 Set reload needed flag high
 Else, decrement staple count

Helpers.c – low level functions for use in any module

Wait (takes a given amount of ms and delays that amount) {
 Set delay timer
 Do nothing until it expires
}

APPENDIX A

CODE

Helpers.h

#ifndef HELPERS
#define HELPERS

//DEFINITIONS
//Boolean definitions
#define TRUE 1
#define FALSE 0
#define SUCCESS 1
#define FAILURE 0
#define OPEN 1
#define CLOSED 0

//Levels of difficulty
#define EASY 1
#define MEDIUM 2
#define HARD 3

//Timer says hi
#define TIMER_TIME_BASE 1 //number of milliseconds equal to one tick

//FUNCTION PROTOTYPES
void Wait(int ticks);
#endif

Helpers.c

//wait for a given number of milliseconds

//INCLUDES
#include "headers.h"

void Wait(int ticks)
{
 //uses timer 0, which is one of 8 possible timers
 TMRS12_InitTimer(0,ticks);
 while(TMRS12_IsTimerExpired(0) != TMRS12_EXPIRED);
}

Interface.h

#ifndef INTERFACE
#define INTERFACE

//FUNCTION PROTOTYPES
char GetLevel(void);
void InitDispensePrize(void);
char CheckDispensePrize(void);
char LevelSubmitted(void);
char ResetButton(void);

#endif

Interface.c

//CONSTANT DEFINITIONS
#define LEVEL_TRANSITION_EM 220 //voltage in mV at which level transitions from easy to medium
#define LEVEL_TRANSITION_MH 600 //voltage in mV at which level transitions from medium to hard
#define FLYWHEEL_WARMUP_TIME 2000 //amount of time required to spin up the flywheel
#define DISPENSE_TIME 30 //time in ms that prize dispensing motor is on
#define RELAX_TIME 3000 //time to relax before the game is officially over
#define RESET_BUTTON_TIMEOUT 3000 //time in ms you have to hold down reset button for a reset

//MODULE VARIABLE DEFINITIONS
static char levelSubmitted = 0; //state variable set to 1 if start button pressed
static char resetButtonDown = 0; //state variable set to 1 if button is down
static char flywheelReady = 0; //state variable set to 1 when the flywheel is warmed up and ready to go
static char prizeDispensed = 0; //state variable set to 1 when the prize has been dispensed

//INCLUDES
#include "headers.h"

char GetLevel(void) {
 //AD0 - Analog level select, ranges between 0 and 1023
 short potVoltage = ADS12_ReadADPin(0);
 //printf("potV: %d\r\n",potVoltage);

 //return a level based on the pot voltage and transition points
 if(potVoltage < LEVEL_TRANSITION_EM)
 return EASY;
 else if(potVoltage < LEVEL_TRANSITION_MH)
 return MEDIUM;

 else
 return HARD;
}

void LevelTest(void) {
 short potVoltage;
 char Level=GetLevel();
 while(TRUE){ //while()
 potVoltage = ADS12_ReadADPin(0);
 printf("potV: %d\r\n",potVoltage);
 Wait(100);
 }
}

//Call this once to initialize prize dispensing
void InitDispensePrize(void) {
 TMRS12_InitTimer(3,FLYWHEEL_WARMUP_TIME); //start timer
 PTAD = (PTAD | BIT7HI); //turn on flywheel motor
}

/* PUBLIC FUNCTION: char CheckDispensePrize(void)
 description: returns true if prize dispensing is complete and the postgame is over
 pre: -
 post: -
 returns true or false
*/
char CheckDispensePrize(void) {
 if(flywheelReady == 0){ //haven't yet warmed up, so do it
 if(TMRS12_IsTimerExpired(3) == TMRS12_EXPIRED){ //check to see if our flywheel is ready to rock
 TMRS12_InitTimer(3,DISPENSE_TIME); //now this timer will control the length of time dispensing
will take place
 flywheelReady = 1;
 PTT = (PTT | BIT5HI); //turn on dispensing motor
 }
 return FALSE;
 }
 else if(prizeDispensed == 0) { //ting-a-ling! we're ready to shoot business cards.
 //check if we should be done dispensing
 if(TMRS12_IsTimerExpired(3) == TMRS12_EXPIRED){
 TMRS12_InitTimer(3,RELAX_TIME); //now this timer will control the length of time dispensing

will take place
 prizeDispensed = 1;
 PTT = (PTT & BIT5LO); //after time's up, turn off both motors
 PTAD = (PTAD & BIT7LO); //turn off flywheel
 }
 return FALSE;
 }
 else { //all done dispensing the prize. Let's relax for a bit, then return true
 if(TMRS12_IsTimerExpired(3) == TMRS12_EXPIRED) {
 flywheelReady = 0;
 prizeDispensed = 0;
 return TRUE;
 }
 return FALSE;
 }
 return FALSE;
}

char LevelSubmitted(void){
 // get current state of start button
 levelSubmitted = BIT2HI & PTAD;

 // returns 1 if start button pressed
 return levelSubmitted;
}

char ResetButton(void){
 //if button is down and it's a new thang
 if ((PTAD & BIT2HI) && !resetButtonDown) {
 //set the timer and set state of button to down
 TMRS12_InitTimer(5, RESET_BUTTON_TIMEOUT);
 resetButtonDown = 1;
 return 0;
 }

 //if the bit isn't high but our state doesn't reflect that, update the state
 if (!(PTAD & BIT2HI) && resetButtonDown) {
 resetButtonDown = 0;
 return 0;
 }

 //if button isn't down
 if (!(PTAD & BIT2HI)) {
 resetButtonDown = 0;
 return 0;
 }

 //if button is down and we're holding it there
 if ((PTAD & BIT2HI) && resetButtonDown){
 //check if the timer has expired
 //if timer 5 has expired, we set the reset flag
 if (TMRS12_IsTimerExpired(5) == TMRS12_EXPIRED) {
 printf("YOU JUST RESET THE GAME!!!\r\n");
 return 1;
 } else return 0;
 }
}

LED.h

/*
LED.h

Description: This is the header file the module which provides
all of the functions necessary to control the LED's
used in the game
*/

#ifndef LED
#define LED

#define OFF 0
#define ON 1
#define BLINK 2

#define RELOAD_LIGHT_1 0
#define RELOAD_LIGHT_2 1
#define STAPLER_LIGHT_1 2
#define STAPLER_LIGHT_2 3
#define PAYCHECK_LIGHT 4
#define START_LIGHT 5
#define ERGO_INSTRUCT_LIGHT 6

/*
Function Prototypes
*/

//state is OFF, ON, or BLINK;
void ControlLED(char state, int lightID);
void LEDTest(void);
void TurnAllOff(void);

//used as accessory function to ControlLED
static void TurnOffLED(int lightID);
static void TurnOnLED(int lightID);
void BlinkLED(void);

#endif

LED.c

/*
LED.c

Description: This is the code file the module which provides
all of the functions necessary to control the LED's
used in the game
*/
#include "headers.h"
#include "led.h"

/*
Constants
*/
#define BLINK_RATE 300
#define NUM_LEDS 6 //the total number of LEDs we are controlling
#define TIMER_NUMBER 4

/*
Module Variables
*/
static char LED_State [NUM_LEDS + 1];
static char IsBlinking [NUM_LEDS + 1];

void LEDTest()
{
 int i;
 int time;

 // Cycle through all LEDs and turn on then off - then blink them for awhile
 for(i=0; i<NUM_LEDS; i++)
 {
 time = TMRS12_GetTime();
 ControlLED(ON, i);
 while((TMRS12_GetTime() - time) < BLINK_RATE);
 ControlLED(OFF, i);
 ControlLED(BLINK, i);
 }

 time = TMRS12_GetTime();
 while((TMRS12_GetTime()-time) < 5000) BlinkLED();

 for(i=0; i<NUM_LEDS; i++) TurnOffLED(i);

}

void ControlLED(char state, int lightID)
{
 if(state == ON)
 {
 IsBlinking[lightID] = 0;
 TurnOnLED(lightID);
 }
 else if (state == OFF)
 {
 IsBlinking[lightID] = 0;
 TurnOffLED(lightID);
 }
 else
 {
 IsBlinking[lightID] = 1;
 BlinkLED();
 }
}

void BlinkLED(void)
{

 int i;

 // Check to see if blink timer needs first initialization
 if(TMRS12_IsTimerActive(TIMER_NUMBER) == TMRS12_NOT_ACTIVE && TMRS12_IsTimerExpired(TIMER_NUMBER) !=
TMRS12_EXPIRED)
 {
 TMRS12_InitTimer(TIMER_NUMBER, BLINK_RATE);
 //printf("\r\ninitialized blink timer\r\n\r\n");
 }

 // If the blink timer has expired, we need to change the state of the LEDs (otherwise do nothing)
 if(TMRS12_IsTimerExpired(TIMER_NUMBER) == TMRS12_EXPIRED)
 {
 //printf("blink timer expiration detected\r\n");

 for (i=0;i<NUM_LEDS;i++) //cycle through each LED
 {

 //check if each LED is supposed to be blinking
 if(IsBlinking[i])
 {
 //if it was on, turn it off
 if(LED_State[i] == ON) TurnOffLED(i);
 //if it was off, turn it on!
 else TurnOnLED(i);
 }
 }
 // Reset the timer
 TMRS12_InitTimer(TIMER_NUMBER, BLINK_RATE);
 //printf("blink timer just reset\r\n");
 }
}

static void TurnOffLED(int lightID)
{
 switch(lightID)
 {
 case RELOAD_LIGHT_1:
 PTT = PTT & BIT6LO;
 LED_State[RELOAD_LIGHT_1] = 0;
 break;
 case RELOAD_LIGHT_2:
 PTT = PTT & BIT7LO;
 LED_State[RELOAD_LIGHT_2] = 0;
 break;
 case STAPLER_LIGHT_1:
 PTAD = PTAD & BIT3LO;
 LED_State[STAPLER_LIGHT_1] = 0;
 break;
 case STAPLER_LIGHT_2:
 PTAD = PTAD & BIT4LO;
 LED_State[STAPLER_LIGHT_2] = 0;
 break;
 case PAYCHECK_LIGHT:
 PTAD = PTAD & BIT5LO;
 LED_State[PAYCHECK_LIGHT] = 0;
 break;
 case START_LIGHT:

 PTAD = PTAD & BIT6LO;
 LED_State[START_LIGHT] = 0;
 break;
 default:
 break;
 }
}

static void TurnOnLED(int lightID)
{
 switch(lightID)
 {
 case RELOAD_LIGHT_1:
 PTT = PTT | BIT6HI;
 LED_State[RELOAD_LIGHT_1] = 1;
 break;
 case RELOAD_LIGHT_2:
 PTT = PTT | BIT7HI;
 LED_State[RELOAD_LIGHT_2] = 1;
 break;
 case STAPLER_LIGHT_1:
 PTAD = PTAD | BIT3HI;
 LED_State[STAPLER_LIGHT_1] = 1;
 break;
 case STAPLER_LIGHT_2:
 PTAD = PTAD | BIT4HI;
 LED_State[STAPLER_LIGHT_2] = 1;
 break;
 case PAYCHECK_LIGHT:
 PTAD = PTAD | BIT5HI;
 LED_State[PAYCHECK_LIGHT] = 1;
 break;
 case START_LIGHT:
 PTAD = PTAD | BIT6HI;
 LED_State[START_LIGHT] = 1;
 break;
 default:
 break;
 }
}

void TurnAllOff(void)
{
 int i;
 for (i=0;i<NUM_LEDS;i++) ControlLED(OFF,i);
}

Paper.h

#ifndef PAPER
#define PAPER

//motorID constants
#define PAPER1 0 //motorIDs, which correspond the the array indexes of paper stack state variables
#define PAPER2 1

//function prototypes
void PopupTest(char motorID);
char CalibratePopup(char motorID);
char GetPopupPos(char motorID);
void SetPopup(char motorID, char finalPos);
char CheckAllPopupsForArrival(void);
static char CheckPopupArrival(char motorID);
static int CalculateMoveDuration(int diffPos, char direction, char motorID);
static void StartMotor(char motorID, char direction, unsigned char dutyCycle);
static void StopMotor(char motorID);
static char JustHitLimit(char motorID);
static char AtLimit(char motorID);

#endif

Paper.c

///////////////
// paper.c //
///////////////

/*
OVRERVIEW: the paper.c module controls the paper stacks using three public functions.
1) CalibratePopup must be run before any other paper functions are used. As a precondition, the paper
stacks must not be at their limit switches. The paper stacks will end at the down position.
2) SetPopup is used to set the position of a chosen paper stack to an absolute position anywhere from 0
(bottom) to 100 (top)
3) CheckAllPopupsForArrival must be called continuously in an event-checking loop. It makes sure the paper
stacks stop when they hit their destinations or limits, and returns true if all the paper stacks are in
place
*/

//INCLUDES
#include "headers.h" //includes all headers

//constant definitions

//direction constants
#define UP 1 //paper stack moving upwards
#define DOWN (-1) //paper stack moving downwards
#define TOP 1 //paper stack limit at the top of travel
#define BOTTOM (-1) //paper stack limit at the bottom of travel

//limits definitions and adjustment constants
#define MAX_PAPER_POSITION 100 //arbitrary max end of paper position range
#define MIN_PAPER_POSITION 0 //arbitrary min end of paper position range
#define DEF_PAPER_DUTY 60 //default duty cycle for paper movement
#define DUTY_UP_FACTOR 150 //multiplier for duty cycle when going up

//module variable definitions
//array variables are sized according to the number of paper stacks, which equals 2 for this game
static char paperMoving[2] = {0,0}; //are the paper stacks moving up, down, or 0?
static char paperLastLimit[2] = {0,0}; //1 if paper is at a limit, 0 if it isn't at a limit.

//RSVP inputs, outputs, and timers for the paper stacks
static int paperPosition[2] = {0, 0}; //destination position of paper (from 0 = max down to 100 = max up)
assume a start at the middle
static char limitPortsHI[2] = {BIT4HI, BIT5HI}; //which PTM ports are the paper stacks attached to?
static char motorDirectionPortsHI[2]= {BIT3HI, BIT4HI}; //PTM
static char motorDirectionPortsLO[2]= {BIT3LO, BIT4LO}; //PTM
static char motorEnablePorts[2]= {PWMS12_CHAN0, PWMS12_CHAN1}; //PTM
static char motorTimerNumbers[2]={1, 2}; //reserve timers one and two

//the following variables need to be set during the calibration routine:
static int upTicks[2] = {900, 900}; //IF MOVING UP, how many ticks does it take to go all the way from
lower to upper limit? Needs to be calibrated.
static int downTicks[2] = {900, 900}; //IF MOVING DOWN, how many ticks does it take to go all the way from
upper to lower limit? Needs to be calibrated.

/* PUBLIC FUNCTION: void PopupsTest(char motorID)
 description: runs a routine to test the given popup
 pre: attach popup prototype with motor and limit switch
 post: -
 returns nothing
*/
void PopupTest(char motorID){

 int i;

 //Tell the world what's up
 if(motorID == PAPER1){
 printf("Popup test for PAPER STACK 1: \r\n");
 }
 else if(motorID == PAPER2){
 printf("Popup test for PAPER STACK 2: \r\n");
 }

 //check limit switch
 printf("Checking limit switch \r\n");
 for(i=0; i<100; i++){
 Wait(400);
 if(AtLimit(motorID))
 printf("At limit \r\n");
 else
 printf("NOT at limit \r\n");

 if(JustHitLimit(motorID))
 printf("Just hit limit \r\n");
 }

 //Calibrate the first popup
 //CalibratePopup(motorID);

 /*
 //Check SetPopup function
 SetPopup(motorID, 60);
 printf("Going to abs 60 \r\n");
 while(!CheckAllPopupsForArrival());
 printf("Arrived at abs 60 \r\n");
 SetPopup(motorID, 20);
 printf("Going to abs 20 \r\n");
 while(!CheckAllPopupsForArrival());
 printf("Arrived at abs 20 \r\n");
 SetPopup(motorID, 100);
 printf("Going to abs 100 \r\n");
 while(!CheckAllPopupsForArrival());
 printf("Arrived at abs 100 \r\n");

 SetPopup(motorID, 0);
 printf("Going to abs 0 \r\n");
 while(!CheckAllPopupsForArrival());
 printf("Arrived at abs 0 \r\n");
 */
}

/* PUBLIC FUNCTION: char CalibratePopup(char motorID)
 description: automatically calibrates paper stack to know how long to pulse
 pre: stacks are in the middle of travel, away from limits
 post: stacks in the lower position
 return char: 1 if calibration was successful, 0 if it failed
*/
char CalibratePopup(char motorID){
 int startTime;

 printf("\r\nBeginning popup calibration: \r\n");

 //return an error and do not calibrate if you start at a limit, since you don't know which limit you're
at
 if(AtLimit(motorID)){
 printf("ERROR: Calibration must start with paper stack between limits \r\n");
 return 0;
 }
 //go down until the lower limit is hit
 SetPopup(motorID, MIN_PAPER_POSITION);
 printf("1) Travelling to lower limit \r\n");
 //MAY NEED TO DEBOUNCE HERE
 while(!CheckPopupArrival(motorID)); //kill time until the stack arrives where it should be
 printf(" Reached the lower limit \r\n");
 Wait(1000); //pause to let the motor chill out for a wee bit

 //start a timer
 startTime = TMRS12_GetTime();

 //start going up until the upper limit is hit
 SetPopup(motorID, MAX_PAPER_POSITION);
 printf("2) Travelling to upper limit \r\n");
 while(!CheckPopupArrival(motorID));
 printf(" Reached the upper limit \r\n");

 //stop the timer and calculate the elapsed time
 upTicks[motorID] = TMRS12_GetTime() - startTime;
 printf("upTicks = %d \r\n", upTicks[motorID]);
 Wait(1000); //pause to let the motor chill out for a wee bit

 //start a timer
 startTime = TMRS12_GetTime();

 //now go down until the lower limit is hit
 SetPopup(motorID, MIN_PAPER_POSITION);
 printf("3) Travelling to lower limit \r\n");
 while(!CheckPopupArrival(motorID));
 printf(" Reached the lower limit \r\n");

 //stop the timer and calculate the elapsed time
 downTicks[motorID] = TMRS12_GetTime() - startTime;
 printf("downTicks = %d \r\n", downTicks[motorID]);
 Wait(1000); //pause to let the motor chill out for a wee bit

 printf("Calibration complete!\r\n");
 return 1;
}

//PUBLIC FUNCTION
//Given a motor, returns the current position of the motor
char GetPopupPos(char motorID){
 return paperPosition[motorID];
}

/* PUBLIC FUNCTION: void SetPopup(char motorID, char finalPos)
 description: given a final position, goes to it. It you set a max position as a final destination, it
goes until the limit is hit. Otherwise it sets the stop time for getting to an intermediate destination.
 pre: calibration must be performed before SetPopup can be called
 post: have to check the motor's arrival continuously until the motor has arrived, or suffer the collision
consequences
 returns nothing
*/
void SetPopup(char motorID, char finalPos){
 char diffPos;

 char direction = 0;
 int numTicks;

 printf("Setting motorID=%d popup to finalPos=%d \r\n", motorID, finalPos);

 if(paperMoving[motorID] && (finalPos > MIN_PAPER_POSITION) && (finalPos < MAX_PAPER_POSITION)){ //if
it's already moving, do nothing
 //printf("WARNING: Trying to move a motor that's already in motion \r\n");
 return;
 }
 //If you're going to min or max, just plow forward until you hit a limit
 if(finalPos <= MIN_PAPER_POSITION){
 if(paperPosition[motorID] == MIN_PAPER_POSITION) //we are already at min
 return;
 TMRS12_ClearTimerExpired(motorTimerNumbers[motorID]); //NOT NEEDED?
 StartMotor(motorID, DOWN, DEF_PAPER_DUTY); //go motor! No timer needed becuase we want it to go
all the way to the limit
 paperPosition[motorID] = MIN_PAPER_POSITION; //will end up at the destination
 //******
 if(AtLimit(motorID)){ //if we're trying to go end to end, allow a grace period
 Wait(200);
 }
 }
 else if(finalPos >= MAX_PAPER_POSITION){
 if(paperPosition[motorID] == MAX_PAPER_POSITION) //we are already at max
 return;
 TMRS12_ClearTimerExpired(motorTimerNumbers[motorID]);
 StartMotor(motorID, UP, DEF_PAPER_DUTY);
 paperPosition[motorID] = MAX_PAPER_POSITION;

 if(AtLimit(motorID)){ //if we're trying to go end to end, allow a grace period
 Wait(200);
 }
 }
 else{ //you are actually in a happy place in between the limits
 if(finalPos > paperPosition[motorID]){ //going up
 direction = UP;
 diffPos = finalPos - paperPosition[motorID]; //should be a positive value
 //printf("going up a relative %d ticks \r\n", diffPos);
 }

 else if(finalPos < paperPosition[motorID]){ //going down
 direction = DOWN;
 diffPos = paperPosition[motorID] - finalPos; //should be a positive value
 //printf("going down a relative %d ticks \r\n", diffPos);
 }
 //update motor position and states
 numTicks = CalculateMoveDuration(diffPos, direction, motorID);
 TMRS12_InitTimer(motorTimerNumbers[motorID], numTicks);
 StartMotor(motorID, direction, DEF_PAPER_DUTY);
 paperPosition[motorID] = finalPos;
 }
}

/* PUBLIC FUNCTION: char CheckAllPopupsForArrival(void)
 description: a checking and handling function that stops the paper stacks if they hit limits or run out
of time. Use in an event-checking loop..
 pre: none
 post: motors stopped if they need to be
 return char: true if all systems are stopped, false if any paper stack is still in motion
*/
char CheckAllPopupsForArrival(void){
 char CPA1;
 char CPA2;
 CPA1 = CheckPopupArrival(PAPER1);
 CPA2 = CheckPopupArrival(PAPER2);
 //if nothing's moving, our job's done here
 if(CPA1 && CPA2){
 return TRUE; //all systems are stopped
 }
 return FALSE; //at least one of the stacks is still moving
}

/* PRIVATE FUNCTION: static char CheckPopupArrival(char motorID)
 description: a checking and handling function that stops the given paper stack if it hits its limits or
run out of time.
 pre: none
 post: motor stopped if it needs to be
 return char: true if the motor is stopped, false if it is still in motion
*/
static char CheckPopupArrival(char motorID){

 //if stack is moving, stop if needed
 if(paperMoving[motorID] != 0){ //if paper is moving
 //printf("PAPER IS MOVING \r\n");
 if(JustHitLimit(motorID)){
 //make sure if we hit a limit, we update our position to know where we are
 if(paperMoving[motorID] == DOWN) {
 printf("paperPosition[0]=%d \r\n", paperPosition[0]);
 printf("paperPosition[1]=%d \r\n", paperPosition[1]);
 printf("paperMoving[0]=%d \r\n", paperMoving[0]);
 printf("paperMoving[1]=%d \r\n", paperMoving[1]);
 printf("paperLastLimit[0]=%d \r\n", paperLastLimit[0]);
 printf("paperLastLimit[1]=%d \r\n", paperLastLimit[1]);

 paperPosition[motorID] = MIN_PAPER_POSITION;
 printf("Reinterpreted position of motor %d to MIN \r\n", motorID);
 }
 if(paperMoving[motorID] == UP){
 paperPosition[motorID] = MAX_PAPER_POSITION;
 printf("Reinterpreted position of motor %d to MAX \r\n", motorID);
 }
 TMRS12_ClearTimerExpired(motorTimerNumbers[motorID]);
 StopMotor(motorID);
 }
 if(TMRS12_IsTimerExpired(motorTimerNumbers[motorID]) == TMRS12_EXPIRED){
 TMRS12_ClearTimerExpired(motorTimerNumbers[motorID]);
 StopMotor(motorID);
 }
 return FALSE; //one of the stacks is still moving
 }
 return TRUE; //stacks aren't moving
}

/* PRIVATE FUNCTION: static int CalculateMoveDuration(int diffPos, char direction, char motorID)
 description: given a difference in position, find how long it should move
 pre: calibration completed
 post: none
 return int: the number of ticks the paper stack should move for
*/
static int CalculateMoveDuration(int diffPos, char direction, char motorID){
 int posPercent = (100 * diffPos) / (MAX_PAPER_POSITION - MIN_PAPER_POSITION); //ranges from 0 (down) to

100 (up)
 int ticksMove;
 //printf("posPercent = %d \r\n", posPercent);

 if (direction == UP){
 ticksMove = posPercent * (upTicks[motorID] / 100);
 printf("MoveDurationUp = %d \r\n", ticksMove);
 return (ticksMove);
 }
 else if (direction == DOWN){
 ticksMove = posPercent * (downTicks[motorID] / 100);
 printf("MoveDurationDown = %d \r\n", ticksMove);
 return (ticksMove);
 }
 else{
 printf("WARNING: Trying to calculate a move duration without a direction!");
 return 0;
 }
}

/* PRIVATE FUNCTION: static void StartMotor(char motorID, char direction, unsigned char dutyCycle)
 description: starts the selected motor going in a direction with a given duty cycle, taking into account
the weight of the popup
 pre: motor attached, voltage and duty high enough that the motor doesn't stall. See L239B data sheet for
motor control details.
 post: motor moving with given speeed and direction, paperMoving properly updated
 returns nothing
*/
static void StartMotor(char motorID, char direction, unsigned char dutyCycle){
 if(direction == UP){
 PTT = PTT | motorDirectionPortsHI[motorID]; //set direction bit high
 PWMS12_SetDuty((dutyCycle*DUTY_UP_FACTOR)/100, motorEnablePorts[motorID]); //use PWM output to set
the motor in motion
 }
 else if(direction == DOWN){
 PTT = PTT & motorDirectionPortsLO[motorID]; //set direction bit low
 PWMS12_SetDuty(dutyCycle, motorEnablePorts[motorID]);
 }
 else{ //if the direction is zero, stop the motor
 PWMS12_SetDuty(0, motorEnablePorts[motorID]);

 }
 //set the paperMoving state
 paperMoving[motorID] = direction;
}

/* PRIVATE FUNCTION: static void StopMotor(char motorID)
 description: stops the selected motor
 pre: preconditions for StartMotor must be met
 post: stops the selected motor
 returns nothing
*/
static void StopMotor(char motorID)
{
 printf("STOPPING MOTOR %d \r\n", motorID);
 StartMotor(motorID, 0, 0);
}

/* PRIVATE FUNCTION: static char JustHitLimit(char motorID)
 description: a wrapper of AtLimit that identifies when a limit is immediately hit
 pre: limit switch attached, a valid motorID must be given
 post: none
 returns char: returns TRUE if the motor just hit a limit, FALSE if it has been at a limit for awhile or
just left a limit*/
static char JustHitLimit(char motorID){
 char curLimitState = AtLimit(motorID);
 if(paperLastLimit[motorID] != curLimitState){
 paperLastLimit[motorID] = curLimitState;
 if(curLimitState == TRUE){ //return true if it just hit a limit, but not if it just came off one
 printf("JUST HIT LIMIT for motorID %d \r\n", motorID);
 return TRUE;
 }
 }
 return FALSE;
}
/* PRIVATE FUNCTION: AtLimit(char motorID)
 description: limit-checking function
 pre: limit switch attached, a valid motorID must be given
 post: none
 returns char: 1 if limit switch is open, 0 if limit switch is closed*/
static char AtLimit(char motorID){

 if(PTM & limitPortsHI[motorID]){ //if paper stack limit switch is high, then it is depressed and in the
middle of travel (not at a limit)
 Wait(10);
 return FALSE;
 }
 Wait(10);
 return TRUE;
}

Play.h

#ifndef PLAY
#define PLAY

//FUNCTION PROTOTYPES
static void MainEventChecker(void);
static void RunChecks(void);
static void InitMAIN(void);
static void InitRESET(void);
static void InitWAITCOIN(void);
static void InitWAITSTART(void);
static void InitPREGAME(void);
static void InitGAME(void);
static void InitPOSTGAME(void);
static char IsWinner(void);
static char CheckCoin(void);

#endif

Play.c

//Uncomment the following line to run the full set of tests
//#define TEST

/*
THE STAPLER GAME DOCUMENTATION

OUTPUTS (8)
 T0 - Paper stack 1 motor control 1 (C) (PWM group 0)
 T1 - Paper stack 2 motor control 1 (C) (PWM group 0)
 T2 - Boss/ergo servo motor signal (PWM group 1)
 T3 - Paper stack 1 motor control 2 (D)
 T4 - Paper stack 2 motor control 2 (D)
 T5 - Prize motor signal
 T6 - Reload light 1
 T7 - Reload light 2
 AD3 - Stapler light 1
 AD4 - Stapler light 2
 AD5 - Paycheck light
 AD6 - Level select and start light
 AD7 - Prize flywheel motor

INPUTS (8)

 AD0 - Analog level select
 AD1 - Coin sensor
 AD2 - Start button
 M0 - Stapler press 1
 M1 - Stapler press 2
 M2 - Stapler reload 1
 M3 - Stapler reload 2
 M4 - Paper stack 1 limit switches
 M5 - Paper stack 2 limit switches

TIMERS (8)
 0 - Wait helper function & staple test
 1 - Paper stack 1
 2 - Paper stack 2
 3 - Prize dispenser
 4 - LED blinking
 5 - Reset button
 6 - Ergo
 7 - UNUSED!
*/

/*
PLAY MODULE
Description: This is the highest-level module. It calls all initializations necessary to play the game
and then begins an infinite loop where it is constantly listens for events and then responds to the events
in an appropriate way.
*/

//Management states
#define AWAY 0
#define ERGO 1
#define BOSS 2

//GameStage definitions
#define RESET 1 //Transition to start conditions
#define WAITCOIN 2 //The period when we are waiting for a player to insert a coin
#define WAITSTART 3 //The period when we are waiting for a player to select a level and hit start
#define PREGAME 4 //From coin insertion until the start of play begins
#define GAME 5 //The main game until a winner is declared
#define POSTGAME 6 //Winning sequence and prize delivery

//Game-winning scores!
#define EASY_WIN_SCORE 40 //number of staples needed to win the easy level
#define MEDIUM_WIN_SCORE 60 //number of staples needed to win the medium level
#define HARD_WIN_SCORE 60 //number of staples needed to win the hard level

//Game timeout definition
#define TIMEOUT 480000

#define PREGAME_LENGTH 2000 //how long the pregame sequence lasts (in ms)
#define POSTGAME_LENGTH 6000 //how long the postgame sequence lasts (in ms)

#define ERGO_TIME 5000 //how long you have till the ergo shows up
#define ERGO_GRACE_PERIOD 500 //number of milliseconds grace period before getting caught by ergo
#define ERGO_PUNISHMENT 10 //number of papers HR adds to the stack to punish you
#define ERGO_TIME_UP 3000 //how much time you have to spend with her watching you!
#define LEVEL_SPEED_MULTIPLIER_E 60
#define LEVEL_SPEED_MULTIPLIER_M 70

//MODULE VARIABLE DEFINITION
static char GameStage = RESET; //a variable that keeps track of what stage of the game we are in and is
used by the main event checker.
static char Level = 0; //Level keeps track of the difficulty level that the user chooses

static int P1score = 0; //cumulative player 1 score
static int P2score = 0; //cumulative player 2 score
static char PaperStack1Pos = 0; //position of paper stack 1 from 0 to 100
static char PaperStack2Pos = 0; //position of paper stack 2 from 0 to 100
static char Management = AWAY; //who's looking over the cubicle walls?
static char ErgoAlreadyCame = 0; //goes high if the ergonomist has already wreaked her havoc
static char P1gotcha = 0; //goes high if the ergonomist catches you. Prevents double jeopardy
static char P2gotcha = 0;
static char coinInserted;

static int StageStartTime = 0; //the clock tick time when the game started
static int ErgoStartTime = 0; //time when the ergonomist pops up (if lvl 3)

//INCLUDES
#include "headers.h"

//The REAL main function, which is disabled if we are in testing mode
#ifndef TEST
void main(void)
{
 //Perform main initialization sequence
 InitMAIN();
 printf("main initialized\r\n");

 //Initialize reset once
 InitRESET();
 printf("just reset\r\n");

 //Run main event checker in an endless loop
 while(TRUE)
 {
 MainEventChecker();
 }
 return;
}
#endif

//MainEventChecker
//This is our main event loop, which will always be running in a loop.
//Functions called within MainEventChecker must be non-blocking
static void MainEventChecker(void)
{
 //check for interrupts and refresh continuous state variables
 RunChecks();

 switch(GameStage)
 {
 case RESET:
 //Once mechanical elements are in place and no longer moving, you're done resetting. Wait for
coin!
 if(CheckAllPopupsForArrival())
 {
 //Initialize waitcoin once
 printf("in reset phase\r\n");
 TurnAllOff();

 InitWAITCOIN();
 GameStage=WAITCOIN;
 }
 break;

 case WAITCOIN:
 //When a coin is sensed, go to waitstart
 if(CheckCoin())
 {
 printf("just sensed coin\r\n");
 //Initialize waitstart once
 InitWAITSTART();
 GameStage=WAITSTART;
 }
 break;

 case WAITSTART:
 //check the level
 Level = GetLevel();

 //When the start button is pressed, go to the pregame
 if(LevelSubmitted())
 {
 printf("level has been submitted: %d\r\n",Level);
 //Initialize pregame once
 InitPREGAME();
 GameStage=PREGAME;
 }
 break;

 case PREGAME:
 if(CheckAllPopupsForArrival()){
 //Initialize game once
 InitGAME();
 GameStage=GAME;
 }
 break;

 case GAME:
 //Check for winner. If there is one, end the game.

 if(IsWinner())
 {
 //Initialize postgame once
 printf("we have a winner!!!\r\n");
 InitPOSTGAME();
 GameStage=POSTGAME;
 break;
 }

 switch(Level)
 {
 case EASY:
 //Check if player 1 has stapled
 if(CheckStaplePress(1,Level))
 {
 //Increment score
 P1score++;
 //Update position of paper stack
 PaperStack1Pos = 100 - (100 * P1score) / (100 * EASY_WIN_SCORE /
LEVEL_SPEED_MULTIPLIER_E);
 if(PaperStack1Pos < GetPopupPos(PAPER1)) //only go down!
 SetPopup(PAPER1,PaperStack1Pos);
 }
 //Check if player 2 has stapled
 if(CheckStaplePress(2,Level))
 {
 //Increment score
 P2score++;
 //Update position of paper stack
 PaperStack2Pos = 100 - (100 * P2score) / (100 * EASY_WIN_SCORE /
LEVEL_SPEED_MULTIPLIER_E);
 if(PaperStack2Pos < GetPopupPos(PAPER2)) //only go down!
 SetPopup(PAPER2,PaperStack2Pos);
 }
 break;

 case MEDIUM:
 //If player 1 has plenty of staples
 if(IsAmmoLeft(1))
 {

 //Check if player 1 has stapled
 if(CheckStaplePress(1,Level))
 {
 //Increment score
 P1score++;
 //Update position of paper stack
 PaperStack1Pos = 100 - (100 * P1score) / (100 * EASY_WIN_SCORE /
LEVEL_SPEED_MULTIPLIER_M);
 if(PaperStack1Pos < GetPopupPos(PAPER1)) //only go down!
 SetPopup(PAPER1,PaperStack1Pos);
 }
 }
 //If they are out of staples, they need to reload
 else
 {
 //Illuminate the reload light only
 ControlLED(OFF,STAPLER_LIGHT_1);
 ControlLED(BLINK,RELOAD_LIGHT_1);

 //Check if player reloads
 if(HasReloaded(1))
 {
 //Illuminate the stapler lights only
 ControlLED(OFF,RELOAD_LIGHT_1);
 ControlLED(ON,STAPLER_LIGHT_1);
 }
 }

 //If player 2 has plenty of staples
 if(IsAmmoLeft(2))
 {
 //Check if player 1 has stapled
 if(CheckStaplePress(2,Level))
 {
 //Increment score
 P2score++;
 //Update position of paper stack
 PaperStack2Pos = 100 - (100 * P2score) / (100 * EASY_WIN_SCORE /
LEVEL_SPEED_MULTIPLIER_M);
 if(PaperStack2Pos < GetPopupPos(PAPER2)) //only go down!

 SetPopup(PAPER2,PaperStack2Pos);
 }
 }
 //If they are out of staples, they need to reload
 else
 {
 //Illuminate the reload light only
 ControlLED(OFF,STAPLER_LIGHT_2);
 ControlLED(BLINK,RELOAD_LIGHT_2);

 //Check if player reloads
 if(HasReloaded(2))
 {
 //Illuminate the stapler lights only
 ControlLED(OFF,RELOAD_LIGHT_2);
 ControlLED(ON,STAPLER_LIGHT_2);
 }
 }

 break;

 case HARD:

 //////////////////
 //first scenario//
 //////////////////

 //If it's past time for the ergonomist and she hasn't already come
 if ((TMRS12_IsTimerExpired(6) == TMRS12_EXPIRED) && !ErgoAlreadyCame)
 {
 ErgoAlreadyCame = 1;
 printf("ergo going up!\r\n");
 ErgoStartTime = TMRS12_GetTime();

 //Ergonomist attacks!
 SetServoAngle(ERGO_ANGLE);

 //Illuminate the ergonomist instruction
 ControlLED(ON,ERGO_INSTRUCT_LIGHT);

 //Set gotcha flags to zero
 P1gotcha = 0;
 P2gotcha = 0;
 }

 ///////////////////
 //second scenario//
 ///////////////////

 //If ergo has already wreaked her havoc, we treat it like it's MEDIUM
 //Or if the ergo hasn't shown up yet at all

 if (!ErgoIsUp())
 {
 //
 //The code for this case is identical to MEDIUM!//
 //

 //If player 1 has plenty of staples
 if(IsAmmoLeft(1))
 {
 //Check if player 1 has stapled
 if(CheckStaplePress(1,Level))
 {
 //Increment score
 P1score++;
 //Update position of paper stack
 PaperStack1Pos = 100 - (100 * P1score) / HARD_WIN_SCORE;
 if(PaperStack1Pos < GetPopupPos(PAPER1)) //only go down!
 SetPopup(PAPER1,PaperStack1Pos);
 }
 }
 //If they are out of staples, they need to reload
 else
 {
 //Illuminate the reload light only
 ControlLED(OFF,STAPLER_LIGHT_1);
 ControlLED(BLINK,RELOAD_LIGHT_1);

 //Check if player reloads

 if(HasReloaded(1))
 {
 //Illuminate the stapler lights only
 ControlLED(OFF,RELOAD_LIGHT_1);
 ControlLED(ON,STAPLER_LIGHT_1);
 }
 }

 //If player 2 has plenty of staples
 if(IsAmmoLeft(2))
 {
 //Check if player 1 has stapled
 if(CheckStaplePress(2,Level))
 {
 //Increment score
 P2score++;
 //Update position of paper stack
 PaperStack2Pos = 100 - (100 * P2score) / HARD_WIN_SCORE;
 if(PaperStack2Pos < GetPopupPos(PAPER2)) //only go down!
 SetPopup(PAPER2,PaperStack2Pos);
 }
 }
 //If they are out of staples, they need to reload
 else
 {
 //Illuminate the reload light only
 ControlLED(OFF,STAPLER_LIGHT_2);
 ControlLED(BLINK,RELOAD_LIGHT_2);

 //Check if player reloads
 if(HasReloaded(2))
 {
 //Illuminate the stapler lights only
 ControlLED(OFF,RELOAD_LIGHT_2);
 ControlLED(ON,STAPLER_LIGHT_2);
 }
 }
 }

 //////////////////

 //third scenario//
 //////////////////

 //If ergo is present and is in the process of wreaking havoc
 if (ErgoAlreadyCame && ErgoIsUp())
 {

 /*
 //If the grace period has expired, we can screw with them...
 if((TMRS12_GetTime()-ErgoStartTime) > ERGO_GRACE_PERIOD)
 {

 //Check if player has a staple event
 if(CheckStaplePress(1,Level))
 {
 //If gotcha flag is low, punish them! ha!
 if (!P1gotcha)
 {
 printf("gotcha, suckaaaaaa whose name is player 1!!!\r\n");

 //Decrement score
 P1score = P1score - ERGO_PUNISHMENT;
 if (P1score < 0)
 P1score = 5;
 //Normalize score to feed into setpopup
 PaperStack1Pos = 100 - (100 * P1score) / HARD_WIN_SCORE;
 //Move paper stack up
 SetPopup(PAPER1,PaperStack1Pos);
 //blink their stapler!
 ControlLED(BLINK,STAPLER_LIGHT_1);
 //Gotcha flag goes high
 P1gotcha = 1;
 }
 }
 if(CheckStaplePress(2,Level))
 {
 if (!P2gotcha)
 {
 //Decrement score
 P2score = P2score - ERGO_PUNISHMENT;

 if (P2score < 0)
 P2score = 5;
 //Normalize score to feed into setpopup
 PaperStack2Pos = 100 - (100 * P2score) / HARD_WIN_SCORE;
 //Move paper stack up
 SetPopup(PAPER2,PaperStack2Pos);
 //blink their stapler!
 ControlLED(BLINK,STAPLER_LIGHT_2);
 //Gotcha flag goes high
 P2gotcha = 1;
 }
 }
 }
 */
 //If ergo is done wreaking havoc
 if((TMRS12_GetTime() - ErgoStartTime) > ERGO_TIME_UP)
 {
 //put the management away
 ManagementAway();
 printf("ergo retreating\r\n");

 //relight staplers, turn off ergo light
 ControlLED(OFF,ERGO_INSTRUCT_LIGHT);
 ControlLED(ON,STAPLER_LIGHT_1);
 ControlLED(ON,STAPLER_LIGHT_2);
 }

 }
 break;
 }
 break;
 case POSTGAME:
 //When the prize has been successfully dispensed, reset the game!
 if (CheckDispensePrize()){
 GameStage=RESET;
 InitRESET();
 }
 break;
 }
}

static void RunChecks(void)
{
 if (ResetButton() == 1)
 {
 //reset the game
 printf("resetting game now\r\n");
 GameStage = RESET;
 }
 //blink any LEDs that need blinkin'
 BlinkLED();
 //stop any paper stacks that have hit their limit switches
 CheckAllPopupsForArrival();
}

static void InitMAIN(void)
{
 printf("In MAIN initialization sequence\r\n");

 //Initialize a timer with a 1MS time base (each tick = 1ms)
 TMRS12_Init(TMRS12_RATE_1MS);

 //Initialize PWM
 PWMS12_Init();
 //20ms Period
 PWMS12_SetPeriod(0x5096, PWMS12_GRP1);

 // Initializes AD ports
 if(ADS12_Init("OOOOOIIA") != ADS12_OK)
 printf("ERROR: AD Initialization unsuccessful\r\n");
 // Initialize all PORT M Bits as inputs
 DDRM = 0x00;
 // Initialize all PORT T Bits as outputs
 DDRT = 0xFF;

 // Start with all bits off
 PTT = 0x00;
 PTM = 0x00;

 //Calibrate the paper stack motors (not necessary if values are hard-coded in)

 //CalibratePopup(PAPER1);
 //CalibratePopup(PAPER2);

}

static void InitRESET(void)
{
 printf("In RESET stage\r\n");

 //Set paper stacks to zero
 SetPopup(PAPER1,0);
 SetPopup(PAPER2,0);

 coinInserted = 0;

 //Illumination off
 TurnAllOff();

 //Put management away
 ManagementAway();
}

static void InitWAITCOIN(void)
{
 //printf("In WAITCOIN stage\r\n");

 //Illuminate paycheck slot only
 TurnAllOff();
 ControlLED(BLINK,PAYCHECK_LIGHT);
}

static char CheckCoin(void)
{
 // get current state of coin sensor
 coinInserted = BIT1HI & PTAD;

 // returns 1 if coin has been detected
 return coinInserted;
}

static void InitWAITSTART(void)
{
 printf("In WAITSTART stage\r\n");

 //Start game timeout timer (timer 7)
// TMRS12_InitTimer(7,TIMEOUT);

 //Illuminate start light only
 TurnAllOff();
 ControlLED(BLINK,START_LIGHT);
}

static void InitPREGAME(void)
{
 printf("In PREGAME stage\r\n");

 //Paper stacks up
 SetPopup(PAPER1,100);
 SetPopup(PAPER2,100);

 //Set scores to zero
 P1score = 0;
 P2score = 0;

 //Refill staplers
 RefillStaplers();

 //Turn all lights off
 TurnAllOff();
}

static void InitGAME(void)
{
 printf("In GAME stage\r\n");
 //Illuminate staplers only
 TurnAllOff();
 ControlLED(ON,STAPLER_LIGHT_1);
 ControlLED(ON,STAPLER_LIGHT_2);

 //If difficulty is hard, set ergo surprise time

 if (Level == HARD)
 {
 TMRS12_InitTimer(6, ERGO_TIME);
 ErgoAlreadyCame = 0;
 }
}

static void InitPOSTGAME(void)
{
 char staplerlight;
 char winner;

 printf("In POSTGAME stage\r\n");

 if (P1score > P2score) {
 staplerlight = STAPLER_LIGHT_1;
 printf("PLAYER 1 WINS -> player 1 kicked your ASS, player 2!! \r\n");
 winner = PAPER1;
 }
 else {
 staplerlight = STAPLER_LIGHT_2;
 printf("PLAYER 2 WINS -> player 2 PWNED your lameness, player 1! \r\n");
 winner = PAPER2;
 }

 //Flash winner's stapler light
 TurnAllOff();
 ControlLED(BLINK,staplerlight);

 //Boss emerges
 SetServoAngle(BOSS_ANGLE);

 //Initialie the prize dispension
 InitDispensePrize();
}

//returns true if either player has exceeded the winning score
static char IsWinner(void)
{
 int winningScore;

 //set the winning score based on the selected level
 switch(Level)
 {
 case EASY: winningScore = EASY_WIN_SCORE; break;
 case MEDIUM: winningScore = MEDIUM_WIN_SCORE; break;
 case HARD: winningScore = HARD_WIN_SCORE; break;
 }

 //return true if one of the players has won
 if((P1score >= winningScore) || (P2score >= winningScore))
 return TRUE;

 return FALSE;
}

//The main TESTING function
#ifdef TEST
void main(void)
{
 //Perform main initialization sequence
 InitMAIN();

 /*
 //Test coin sensor
 printf("Please insert a coin\r\n");
 while (!CheckCoin());
 printf("Coin check: CHECK!\r\n\r\n");

 //Test the level selection
 printf("Please select a level and hit start\r\n");
 LevelTest();
 printf("Level check: CHECK!\r\n\r\n");

 //Test the servo
 printf("Servo test beginning...");
 Wait(1000);
 printf("NOW!\r\n");
 ServoTest();
 printf("Servo check: CHECK!\r\n\r\n");

 //Test paper stacks
 printf("Paper stack test beginning...");
 Wait(1000);
 printf("NOW!\r\n");
 PopupTest(PAPER1);
 PopupTest(PAPER2);
 //Test stapler 1 for input
 printf("\r\n Start stapling...");
 Wait(3000);
 printf("NOW!!!!!\r\n");
 StaplerTest();
 printf("Staple check: CHECK!\r\n\r\n");
 //Test the reload functionality
 printf("Please reload the stapler\r\n");
 ReloadTest();
 printf("Reload check: CHECK!\r\n\r\n");
 //Test all LEDs
 printf("LED test beginning...");
 Wait(1000);
 printf("NOW!\r\n");
 LEDTest();
 printf("LED check: CHECK!\r\n\r\n");
 //Test prize dispensing ability
 printf("Prize dispensing test beginning...");
 InitDispensePrize();
 while(CheckDispensePrize() == 0);
 printf("Prize check: CHECK!\r\n");

 Wait(500);
 printf("\r\nTesting complete! Have a nice life!\r\n");
 return;
}
#endif

Servo.h

#ifndef SERVO
#define SERVO

//constant definitions
#define MAX_SERVO_ANGLE 90 //the max degrees of travel the servo can go
#define MIN_SERVO_DUTY 5 //the pwm that will put the servo at its min angle
#define MAX_SERVO_DUTY 10 //the pwm that will put the servo at its max angle
#define BOSS_ANGLE 90 //angle of servo that will pop up boss
#define ERGO_ANGLE 0 //angle of servo that will pop up ergonomist

//FUNCTION PROTOTYPES
void ServoTest(void);
void SetServoAngle(int angle);
void ManagementAway(void);
char ErgoIsUp(void);
static int ConvertAngleToDUTY(int angle);

#endif

Servo.c

//INCLUDES
#include "headers.h"
#include "servo.h"

static char ergoUp = 0;

void ServoTest(void)
{
 short i;
 for(i=0;i<=MAX_SERVO_ANGLE;i=i+5)
 {
 SetServoAngle(i);
 //kill some time
 Wait(100);
 }
 while(TRUE) {
 printf("BOSS \r\n");
 SetServoAngle(BOSS_ANGLE);
 //kill lots of time - it takes awhile for the motor to move, and we don't want to cut it off
 Wait(5000);
 SetServoAngle(ERGO_ANGLE);

 printf("ERGO \r\n");
 Wait(5000);
 }
}

void SetServoAngle(int angle)
{
 //PWM grp1 period already set to 20ms in main initialization
 int duty;

 duty = ConvertAngleToDUTY(angle);
 //printf("duty cycle: %d\r\n",duty);

 if (angle == ERGO_ANGLE) ergoUp = 1;
 else ergoUp = 0;

 PWMS12_SetDuty((char) duty, PWMS12_CHAN2);
}

//Converts an angle to a duty cycle using info from the servo data sheet
static int ConvertAngleToDUTY(int angle)
{
 return (MIN_SERVO_DUTY*100 +
 (MAX_SERVO_DUTY-MIN_SERVO_DUTY) *
 (angle*100 / MAX_SERVO_ANGLE))/100;
}

char ErgoIsUp(void)
{
 return ergoUp;
}

void ManagementAway(void)
{
 int duty;
 ergoUp = 0;

 duty = (MIN_SERVO_DUTY + MAX_SERVO_DUTY)/2;
 PWMS12_SetDuty((char) duty, PWMS12_CHAN2);
}

Stapler.h

#ifndef STAPLER
#define STAPLER

//FUNCTION PROTOTYPES
void StaplerTest(void);
void ReloadTest(void);
char CheckStaplePress(int playerID, char level);
char HasReloaded(int playerID);
char IsAmmoLeft(int playerID);
static char CheckStapler(int playerID, char staplerState);
static void UsedAStaple(int playerID);
void RefillStaplers(void);

#endif

Stapler.c

/*OUTPUTS:
T6 - Reload light 1
T7 - Reload light 2
AD3 - Stapler light 1
AD4 - Stapler light 2
*/

#define STAPLER_CAPACITY 20 //number of staples that a stapler can hold

//INCLUDES
#include "headers.h"

static int P1staples = STAPLER_CAPACITY; //number of staples in player 1's stapler
static int P2staples = STAPLER_CAPACITY; //number of staples in player 2's stapler
static int stapler1down = 0;
static int stapler2down = 0;
static int player1needsreload = 0;
static int player2needsreload = 0;
static int player1hasopened = 0;
static int player2hasopened = 0;
static int player1hasclosed = 0;
static int player2hasclosed = 0;

void StaplerTest(void)
{
int score = 0;
//goes for specific amount of time
 TMRS12_InitTimer(0,1000);
 while(TMRS12_IsTimerExpired(0) != TMRS12_EXPIRED)
 {
 if (!player1needsreload)
 {
 if (CheckStaplePress(1, MEDIUM)) score++; //checks stapler for staple events
 }
 }
 //prints number of staples sensed
 printf("Number of staples sensed is %d\r\n",score);
}

void ReloadTest(void)
{
 player1needsreload = 1;
 while(!HasReloaded(1));
}

char CheckStaplePress(int playerID, char level)
{
 //switch for each player:
 switch (playerID)
 {
 case 1:
 //if stapler is down and current state is 0
 if ((PTM&BIT0HI) && !stapler1down)
 {
 stapler1down = 1; //set current state to 1
 if (level > EASY) UsedAStaple(1);
 printf("stapler 1 just got pressed!\r\n");
 return 1;
 }
 //if stapler is not down and current state is 1
 else if (!(PTM&BIT0HI) && stapler1down)
 {
 stapler1down = 0; //set current state to 0

 //printf("stapler 1 just got released!\r\n");
 }
 return 0;

 case 2:
 //if stapler is down and current state is 0
 if ((PTM&BIT1HI) && !stapler2down)
 {
 stapler2down = 1; //set current state to 1
 if (level > EASY) UsedAStaple(2);
 printf("stapler 2 just got pressed!\r\n");
 return 1;
 }
 //if stapler is not down and current state is 1
 else if (!(PTM&BIT1HI) && stapler2down)
 {
 stapler2down = 0; //set current state to 0
 //printf("stapler 2 just got released!\r\n");
 }
 return 0;
 }
}

char HasReloaded(int playerID)
{
 //switch for each player:
 switch (playerID)
 {
 case 1:
 if (player1needsreload)
 {
 //check for stapler opening
 if (!player1hasopened) player1hasopened = CheckStapler(1,OPEN);
 //check for stapler closing
 if (!player1hasclosed && player1hasopened) player1hasclosed = CheckStapler(1,CLOSED);
 //if both conditions have been satisfied
 if (player1hasopened && player1hasclosed)
 {
 //refill the stapler
 P1staples = STAPLER_CAPACITY;

 //reset all reload-related states
 player1needsreload = 0;
 player1hasopened = 0;
 player1hasclosed = 0;
 return 1;
 } else return 0;
 }

 case 2:
 if (player2needsreload)
 {
 //check for stapler opening
 if (!player2hasopened) player2hasopened = CheckStapler(2,OPEN);
 //check for stapler closing
 if (!player2hasclosed && player2hasopened) player2hasclosed = CheckStapler(2,CLOSED);
 //if both conditions have been satisfied
 if (player2hasopened && player2hasclosed)
 {
 //refill the stapler
 P2staples = STAPLER_CAPACITY;
 //reset all reload-related states
 player2needsreload = 0;
 player2hasopened = 0;
 player2hasclosed = 0;
 return 1;
 } else return 0;
 }
 }
}

//refill both staplers
void RefillStaplers(void){
 P2staples = STAPLER_CAPACITY;
 P1staples = STAPLER_CAPACITY;
 player1needsreload = 0;
 player2needsreload = 0;
}

static char CheckStapler(int playerID, char staplerState)
{

 switch(playerID)
 {
 case 1:
 switch(staplerState)
 {
 case OPEN:
 //if stapler is open and this is a new thang
 if ((PTM&BIT2HI) && !player1hasopened)
 {
 player1hasopened = 1; //player 1 has opened stapler
 printf("stapler 1 just got opened!\r\n");
 return 1;
 } else return 0;
 case CLOSED:
 //if stapler is closed and this is a new thang
 if (!(PTM&BIT2HI) && !player1hasclosed)
 {
 player1hasclosed = 1; //player 1 has closed stapler
 printf("stapler 1 just got closed!\r\n");
 return 1;
 } else return 0;
 }
 case 2:
 switch(staplerState)
 {
 case OPEN:
 //if stapler is open and this is a new thang
 if ((PTM&BIT3HI) && !player2hasopened)
 {
 player2hasopened = 1; //player 2 has opened stapler
 printf("stapler 2 just got opened!\r\n");
 return 1;
 } else return 0;
 case CLOSED:
 //if stapler is closed and this is a new thang
 if (!(PTM&BIT3HI) && !player2hasclosed)
 {
 player2hasclosed = 1; //player 2 has closed stapler
 printf("stapler 2 just got closed!\r\n");
 return 1;

 } else return 0;
 }
 }
}

static void UsedAStaple(int playerID)
{
 switch(playerID)
 {
 case 1:
 if (P1staples <= 1)
 {
 player1needsreload = 1;
 break;
 } else
 {
 P1staples--;
 break;
 }
 case 2:
 if (P2staples <= 1)
 {
 player2needsreload = 1;
 break;
 } else
 {
 P2staples--;
 break;
 }
 }
}

char IsAmmoLeft(int playerID)
{
 if (playerID == 1) return !player1needsreload;
 if (playerID == 2) return !player2needsreload;
}

Headers.h

#ifndef HEADERS
#define HEADERS

//All of the headers needed for mystapler!

//Proven code
#include <stdio.h>
#include <ME218_C32.h>
#include <timers12.h>
#include <PWMS12.h>
#include <ADS12.h>

//Our code
#include "play.h"
#include "stapler.h"
#include "paper.h"
#include "servo.h"
#include "interface.h"
#include "LED.h"
#include "helpers.h"

#endif

Felt Grey
TOTAL $214.00

Appendix B

BOM

Category Item Description Quantity Price
Electronic 2N7000 N-channel mosfet 6 $0.50

LM239B Motor driver chip 2 $2
74HC14 Hex inverter 1 $1
LM339 Comparetor 1 $1
Potentiometer 10K Potentionmeter 1 $3
DC Motor Geared DC motor 4 $6
Tape sensor Used for staplers 2 $2
Coin Sensor Senses pennies 1 $2
Limit Switch Limit switch with lever 4 $1.50
LED Varying colors 50 $0.20
Button Start button 1 $3
Servo For boss/ergo 1 $15
Molex Connectors of diff sizes 20 $0.30
Diodes For preventing V spikes 10 $0.05
Resistors Various values 100 $0.01
Capacitors Various values 5 $0.10

MechanicalStapler Swingline, red 2 $20
Acrylic Multi colored 1 $20
Masonite Brown 1 $15
Foam core Red 1 $5
Fasteners Various 30 $0.05
Foam wheels Foamy 4 $2

Decorative Inbox from ikea 1 $4.50
Paper for graphics 1 $10
Veneer Wood, looks cheesey 1 $5
Mug DFS 1 $3
Tape Scotch 1 $3
Post-its Multi-colored 1 $5
Business Cards Customized 500 $0.01

1 $5

	tps
	Play.c – Main Event Checker Module
	LED.c – Module for controlling all LEDs
	Servo.c – Module to control servo
	Helpers.c – low level functions for use in any module

	tps_appendixA
	APPENDIX A
	Helpers.h
	Helpers.c
	Interface.c
	LED.c
	Paper.c
	Play.c
	Servo.c
	Stapler.c

	tps_appendixB
	Sheet1

