Problem \#1

What is needed here is a 3 bit counter that can be synchronously reset after the count reaches 5 , so that it will count from 0-5. To go with that we may need some logic to recognize a pattern on the Qs to produce the desired output waveform.
In the description that follows, D is the output of the recognition Decision. It is a signal that will be high when it is time to reset the state to 000 .
Q_{0} should toggle except when D is low, in which case it should force a low output. Since a JK toggles when both inputs are high and forces a low when K is high \& J is low, we can connect K_{0} to +5 , since it is always high and J_{0} to D .
$J_{0}=D \quad K_{0}=1 \ldots$
Q_{1} should toggle when Q_{0} is high and D is high and force a low when D is low and hold when Q_{0} is low.

	Q0	D	J1		Q0	D	K1
Toggle	1	1	1		1	1	1
Reset	X	0	0		X	0	1
Hold	0	1	0		0	1	0

$J_{1}=Q_{0} \bullet D \quad K_{1}=\left(Q_{0} \bullet D\right)+\bar{D}$
Q 2 should toggle when $\mathrm{Q} 0 \& \mathrm{Q} 1$ and D are all high. Hold when either Q 0 or Q 1 is low and D is high, and force a low whenever D is low

	Q 0	Q 1	D	J 2		Q 0	Q 1	D	K 2
Toggle	1	1	1	1		1	1	1	1
Reset	X	X	0	0		X	X	0	1
Hold	0	1	1	0		0	1	1	0
Hold	1	0	1	0		1	0	1	0

$J_{2}=Q_{0} \bullet Q_{1} \bullet D \quad K_{2}=\left(Q_{0} \bullet Q_{1}\right)+\bar{D}$
To recognize the state of 5, combine $Q_{0} \bullet \overline{Q_{1}} \bullet Q_{2}$ to form D.
Q_{1} will give the desired output waveform.

Problem \#2

a) The first part of this problem is a resistor sizing exercise. The input is at 12 V , the output will be at 3.3 V , and the delta must be dropped across a resistor while supplying at least 25 mA to a load. In preparation for part b , I chose to have 20 mA flowing through the Zener, when the load was drawing 20 mA .
So a total of 40 mA will be flowing through the resistor. $R=\frac{12 \mathrm{~V}-3.3 \mathrm{~V}}{40 \mathrm{~mA}}=\frac{8.7 \mathrm{~V}}{40 \mathrm{~mA}}=217.5 \Omega$. I chose the next larger standard size since it was closer to the desired value. There is no particular need to choose higher or lower in this case.
b) Since $\mathrm{R}_{\mathrm{dyn}}=5 \Omega$, the $\Delta \mathrm{V}$ will simply be $\mathrm{R}_{\mathrm{dyn}}{ }^{*} \Delta \mathrm{I}=5 \Omega * 2 \mathrm{~mA}=10 \mathrm{mV}$

Problem \#3

Since the signal provided to indicate activity is only 1 V , and the voltage necessary to light the LED is 1.7 V , we will need to use the 1 V signal to control a higher voltage to actually energize the LED. The circuit below will do that, while delivering 50 mA through the LED and maintaining the transistor in saturation because I into the base $=\frac{1 V-0.6 \mathrm{~V}}{80 \Omega}=\frac{0.4 \mathrm{~V}}{80 \Omega}=5 \mathrm{~mA}$

Problem \#4

a) if $\operatorname{Vin}=5 \mathrm{~V}$, the transistor will be on because there is sufficient potential available at the base the turn the transistor on. A base current of $\frac{5 V-0.6 \mathrm{~V}}{6.8 \mathrm{~K} \Omega}=0.647 \mathrm{~mA}$ will flow. If the transistor is saturated, its collector will be at 0.2 V , putting $8-.2=7.8 \mathrm{~V}$ across the 820Ω resistor. This will cause 9.5 mA to flow through the 820Ω resistor. Of that, $\frac{0.2 V}{1500 \Omega}=0.133 m A$ will flow through the 1500Ω resistor, leaving 9.366 mA to flow through the collector. This yield a Base:Collector current ratio of 1:14.47, which falls within the acceptable range to call saturation.
b) If Vin $=-5 \mathrm{~V}$, the transistor will be off because the Base:Emitter junction will be reverse biased. The output voltage will be set by the voltage divider formed by the $820 \Omega \& 1500 \Omega$ resistors and accounting for the transistor off state leakage current $\frac{8 V-V_{c}}{820 \Omega}=\frac{V_{c}}{1500}+100 \mu A V_{c}=5.12 \mathrm{~V}$.
c) When $\mathrm{Vin}=12 \mathrm{~V}$, the $\Delta \mathrm{V}$ across the input resistor is $12-0.6=11.4 \mathrm{~V}$, therefore the current is 1.68 mA flowing into the base of the transistor.
d) When the input is at -25 V , the base of the transistor will be held to -0.6 V by the 1 N 4001 , so the DV across the resistor is $25-0.6=24.4 \mathrm{~V}$, therefore the current is 3.59 mA flowing towards Vin.
e) The equivalent resistance seen by the output capacitor will be the parallel combination of 820Ω and 1500Ω, or 530Ω. So $\tau=530 \Omega * 20 \mathrm{pF}=1.06 \mathrm{E}^{-8} \mathrm{~S}$. The $10 \%-90 \%$ rise time is 2.2τ or 23.3 nS

Problem \#5

a)
A B C M 1 1 1 1 1 1 0 1 1 0 1 1 1 0 0 0 0 1 1 1 0 1 0 0 0 0 1 0 0 0 0 0

b) $(A \bullet B \bullet C)+(A \bullet B \bullet \bar{C})+(A \bullet \bar{B} \bullet C)+(\bar{A} \bullet B \bullet C)$

AB			
C	00	0111	10
0	0	0 1)	0
1	0	(1)	

d) $(A \bullet B)+(A \bullet C)+(B \bullet C)$

ME218 Midterm Solution 1996

Problem \#6

a) Maximum current will flow when two of the transistors in the bridge are saturated. With V2 at a high enough potential, the upper left \& lower right transistors will be on and saturated, providing 5-.2-.2=4.6V across the 27Ω resistor. This will cause 170 mA to flow through R_{7}. Using the $10: 1$ rule of thumb, this will require 17 mA of base current in both the upper left \& lower right transistors. 17 mA through 220Ω will result in a 3.74 V drop across R6. This means that we need $3.74+0.6 \mathrm{~V}$ or 4.34 V at V 2 to get the lower right transistor into saturation. With this voltage at V 2 , we will get $4.34 \mathrm{~V}-0.6 \mathrm{~V}=3.74 \mathrm{~V}$ across R 2 , which will result in 1.7 mA flowing into its base. This is enough to support the required collector current of 17 mA needed to put the upper left transistor into saturation. The current through R3 (the base current for the upper left transistor) will be $\frac{5 V-0.6 V-0.2 V}{220 \Omega}=19 m A$. This leaves us with a 1:8.9 ratio on the upper transistor, 1:11.2 ratio on the helper transistor and 1:10 on the lower right transistor. All sufficient for saturation.
b) 170 mA flow left to right
c) Since that transistor is on, the base will be 0.6 V below the emitter, which is at 5 V , so $5-0.6=4.4 \mathrm{~V}$
d)Source $17 \mathrm{ma}+1.7 \mathrm{ma}=18.7 \mathrm{~mA}$
e) 0 , there would be no potential across the resistor, but there would be massive current flowing through the bridge transistors.

ME218 Midterm Solution 1996

Problem \#7

The minimum size for the resistor is set by the current sinking capabilities of the LS05 in the low state. This is 8 ma . From this we must subtract the input current that will be coming from the $74 \mathrm{C} 04 \mathrm{~s}(-1 \mu \mathrm{~A}$ each) leaving 7.997 mA that could be sunk from the pull-up resistor. The voltage across the pull-up resistor will be $5 \mathrm{~V}-0.35 \mathrm{~V}=4.65 \mathrm{~V}$ (I have taken the typical value since it is more conservative than the max. value).
Therefore $\mathrm{R}_{\min }$ is $\frac{4.65 \mathrm{~V}}{7.997 \mathrm{~mA}}=581 \Omega$.
The maximum size for the resistor is set by the combination of the input current and voltage requirements of the 74 C 04 s and the leakage current of the ' 05 . They require $1 \mu \mathrm{~A}$ per input at 3.5 V (with a 5 V power supply) and the ' 05 leaks $100 \mu \mathrm{~A}$. So the maximum resistor size is $\frac{5 V-3.5 \mathrm{~V}}{103 \mu A}=14.56 \mathrm{~K} \Omega$.
The rise time requirement implies a τ of $\frac{50 n S}{2.2}=22.7 n S$. The input capacitance of each 74 C 04 is 6 pF for a total of 18 pF . Since $\tau=R C$, the largest resistor that will satisfy the rise time requirement is $\frac{\tau}{18 p F}=\frac{22.7 n S}{18 p F}=1263 \Omega$. I would choose $1.2 \mathrm{~K} \Omega$ as the closest standard size. This will be the minimum power dissipation solution because it is the largest value that will meet the rise-time requirements.

Problem \#8

The shortest interval between groups is when there are groups of 3 with minimum inter-widget spacing of

1 mS :
1
1
which yields a minimum time between first elements of 105 mS .
The longest time to complete a group is for a group of 7 with the maximum inter-widget spacing of 10 mS :

10

10

10
which yields a maximum time from first element to last element of 67 mS .
Therefore between $67 \mathrm{mS} \& 105 \mathrm{mS}$ after the first member of a group is a period when we are guaranteed the input will be low. So, set up a 555 One-Shot (Mono-stable) to fire between $67 \& 105 \mathrm{mS}$ (I chose 86 mS). The falling edge of that pulse will trigger a 2 nd 555 one-shot to time the output pulse for 1 mS . The output of that 555 will gate the recognition logic for $3,5 \& 7$ elements. Finally, the falling edge of the output of the 2 nd 555 will trigger a final 555 to generate another 1 mS pulse to reset the ' 161 counter.

