ME218a Final 1996 Problem \#1

The simplest solution is to put the sensor into a voltage divider circuit

If we make $\mathrm{Rp}=11 \mathrm{k}$, we will get maximum voltage at $10 \% \mathrm{RH}$ $=2.5 \mathrm{~V}$
At 100% RH $V=5\left(\frac{8}{19}\right)=2.1 V$
$\Delta \mathrm{V}=0.4 \mathrm{~V}$

We want that $\Delta \mathrm{V}$ to cover the $0.5 \mathrm{~V}-4.5 \mathrm{~V}$ output range. $\Delta \mathrm{Vo}=4 \mathrm{~V}, \Delta \mathrm{Vi}=0.4 \mathrm{~V}$ there fore the gain should be 10 . TO get the minimum output volatage at the minimum RH, use an inverting OpAmp:

To compute the required offset, look at Vin and Vout at 100% RH:

$i=\frac{4.5-2.1}{1.1 M \Omega}=2.1818 \mu \mathrm{~A}$
\therefore ? $=4.5 V-2.1818 \mu A * 1 M \Omega=2.318 V$
This can be obtained with a simple voltage divider:

$$
\begin{aligned}
& 5\left(\frac{?}{?+1 k}\right)=2.318 \mathrm{~V} \\
& \frac{5 ?}{?+1 k \Omega}=2.318 \mathrm{~V} \\
& 5 ?=2.318 ?+2.318 \mathrm{k} \Omega \\
& 2.682 ?=2.318 \mathrm{k} \Omega \\
& ?=864 \Omega
\end{aligned}
$$

The complete solution:

ME218a Final 1996 Problem \#2

c)

d) $V_{\text {in }}$ is always less than +5 V , so it will never source any current.
e) The maximum common mode voltage is at the positive threshold: 0.475 V

g) No, it violates the -0.3 V spec. to fix it, change the 25.1 k resistors to a $2 \mathrm{k}+8.2 \mathrm{k}$:

New minimum $=-0.175 \mathrm{~V}$, nothing else will be effected because the total still $=10.2 \mathrm{k}$
h) $\frac{5}{3.9 k}+\frac{0.452}{2 M}=1.28 m A$ Dominated by the 3.9 k

ME218a Final 1996 Problem \#3

a)

This output occurs just as the output switches H-.L; Vin Crosses 0 rising
b) The minimum is when Vin is at the maximum negative voltage, the - will be below by 0.6 V . In this condition is at 2.512 V so $2.512-0.6 \mathrm{~V}=1.912 \mathrm{~V}$
c) When Vin $=1 \mathrm{~V}$, the output will be low so:

- will be 1 diode drop higher: $2.487 \mathrm{~V}+0.6 \mathrm{~V}=3.087 \mathrm{~V}$
d) this is the same condition as in part \#b: 1.912 V
e) it won't change, therefore $\mathrm{V}=3.087 \mathrm{~V}$

ME218a Final 1996 Problem \#4

Direction:

Orient the pot so that center scale $=$ mid resistance 100 k

$$
\begin{aligned}
& \frac{2.5 \mathrm{~V}}{180^{\circ}}=0.013 \overline{8} \mathrm{~V} /^{\circ} \Rightarrow 45^{\circ}=0.625 \mathrm{~V} \\
& \therefore V_{\min }=2.5-0.625=1.875 \\
& V_{\max }=2.5+0.625=3.125 \mathrm{~V}
\end{aligned}
$$

Use a window comparator:

Let the lower $\mathrm{R}=1 \mathrm{k}$ then $i=\frac{1.875 \mathrm{~V}}{1 \mathrm{k}}=1.875 \mathrm{~mA}$.
Then the middle $R=\frac{3.125-1.875}{1.875 m A}=666 \Omega$; use a 1 k pot.
finally the upper $R=\frac{5-3.125}{1.875}=1 k$

Speed:

The easiest solution here is to use the circuit from problem \#3 to turn the output of the generator into a pulse train with a proportionality constant of $1 \mathrm{~Hz} / \mathrm{MPH}$. Therefore at $25 \mathrm{MPH} \mathrm{f}=25 \mathrm{~Hz}$.

If we feed that pulse train into a counter that is being periodically (period $=0.64 \mathrm{~S}$) reset by an astable 555 , if the counter ever overflows, we know that the speed has exceeded the threshold. Unfortunately, the output of the overflow would pulse every time that the counter was reset. To avoid a pulsing indicator, use a flip-flop to latch the state of the overflow bit at each reset pulse.

Finally, take the direction and speed indicators and AND them to get the Nor'Easter logic indicator. This can drive a ULN2003 to light an LED:

