## Due by 4:30pm on 12/11/97

Name: $\qquad$

I Certify that I have taken this examination is compliance with the Stanford University Honor Code.

Signature

This is the Cover Sheet for your Solution !

| $\# 1$ |
| ---: |
| $\# 2$ |
| $\# 3$ |
| $\# 4$ |
| $\# 5$ |
| $\#-$ |
| $\#-$ |
| $\# 8$ |
| $\# 9$ |
| $\# 10$ |
| Total |

## Problem 1 (10pts)



You encounter an output circuit like the one shown above.
a) What measurement(s) of the nodes shown would you make to determine whether or not the transistor is in saturation ?
b) If you could only make a single measurement, what would it be and what value (or range) would you expect if the transistor was in saturation?

## Problem 2 (10pts)


a) What voltage is necessary at point A to force the TIP32 into saturation?
b) What current (direction and magnitude) must be sourced/sunk at point A to force the TIP32 into saturation?

## Problem 3 (5pts)



Can you explain to your lab-bench partner why their circuit (above) is not working? Be very specific about the details, quoting specifiations.

## Problem 4 (10pts)



What is the maximum clock frequency, without exceeding specifications, for this circuit?

## Problem 5 (5pts)

Describe the output signal from the circuit in problem 4.

## Problem 6 (15pts)



Given the 3 logic inputs, $A, B, C$ and a clock, design a circuit to implement this state machine. Minimize the logic required.

## Problem 7 (10pts)



What voltage would you expect at the output of the LM324 ?

## Problem 8 (10pts)



Describe the output amplitude of the LM324 in this circuit.

## Problem 9 (10pts)



Show 2 different circuit designs (including component values) that would transform the input signal into the output signal with no more than $1 \%$ error in amplitude. Phase is unimportant, and you may ignore component tolerances.

## Problem 10 (15pts)

Design a circuit that will light an LED $\left(\mathrm{V}_{\mathrm{f}}=1.5 \mathrm{~V} @ 2 \mathrm{~mA}\right)$ when an input voltage is greater than 2 V or less than 1 V .

