Design Overview

Game Strategy:

Our strategy for the game was to score all the balls in goal #3 (which is a box), since it is worth the
most points. This eliminated the need to differentiate between yellow and black balls. Since there is a
10 second delay to reset the dispenser tower after 5 balls have been dispensed, our goal was to
dump a payload into the goal and return in 10 seconds to maximize our efficiency. Our robot moved
so fast that we actually had to introduce an extra time delay so that the round-trip took over 10
seconds.

Software Design:

To structure the code, we employed the state machine template for the overall game and then used
a nested state machine for tape sensing. A high level outline of the overall game can be found below
and is broken into five game segments for easier reading:

INITIAL ORIENTATION + APPROACH
Wait for electronic flash
Scan left until you see what could be a beacon
stop the motors and run the fake beacon check, make sure it’s really a beacon
if it is a beacon, go to next stage
if not, rotate a bit to make sure we don't sense the same fake beacon again and then continue
checking
Move forward a bit without tape sensing to get off the green square
Move forward until we hit tape
Flip the mirror flag high based on whether we hit L or R tape sensor first
Go forward until the first black tape line is passed
Rotate a bit so we're aimed at the ball dispenser
Approach tape, follow tape until T is hit

GET BALLS FROM DISPENSER

Move forward until you hit the front bumper OR if bumper is already hit, create a bump event
Sit still until a ball is collected

Move backwards

(repeat 4 more times to get 5 balls)

GOTOGOAL

Turn 90 degrees to face the green line of tape that leads to goal 3

Go forward a little bit until we're off the tape, then enable tape sensing
TURBO BOOST for a second or so!

Go forward until tape is hit

Activate tape sensing, follow to the T

Back up a bit to better align with goal 3

Turn to face the goal

Go forward until front bumper is hit

SCORE POINTS!
Activate the servo to dispense the balls

GO BACK TO THE DISPENSER

Back up a bit

Turn to face the dispenser

Go forward so we pass the green tape

TURBO BOOST for a second or so

Then activate tape sensing

Follow the black tape to the T

Cycle through “get balls from dispenser” code, do this until either the game timer runs out or we've
deposited 20 balls

(for a full code listing, including headers, please see the *end* of the document...)

Hardware Design

Our hardware design was focused on simple
construction and stable, consistent
performance. The basic robot chassis is a
single 10"-square board, with two vertical
walls coming up from the base. These pieces
were modeled in SolidWorks and cut from
1/4" Masonite on the LaserCAMM. The goal of
the design was to make it as flexible and
modifiable as possible. Every mounting hole
for any component (drive train, side wall, tape
sensor, circuit board, etc...) was designed
with slots so the components could be
moved around and shifted as necessary.

Drive train:

The drive train of the robot consists of
two wheels mounted in the middle of
the robot, and a sliding support in front
and back. The wheels are made of
custom-cast rubber. Motors, generously
donated by Maxon Motors, are coupled
to the wheels through spider couplings.
The whole assembly is mounted on the
transverse center line of the robot so it
can pivot about its center, simplifying
maneuvers. The decision was made to
forgo the use of shaft encoders for
simplicity. Sliding supports were
chosen for the front and back because
they are significantly lighter than
casters.

Sensors:

The robot has three IR sensors used to detect lines of tape placed on the field. One sensor is mounted
in the exact center between the motors so that it will remain in place during pivoting maneuvers.
The other two sensors are mounted on the front, spaced slightly wider than the lines of tape. The line
following strategy is a simple bang-bang design (there is no proportional sensing of tape), but for the
assigned game it is adequate. The robot has a phototransistor that is used a beacon sensor. It is
housed inside a short section of a pen body wrapped in electrical tape, and mounted directly to a
molex connector on the corresponding circuit board.

Bumper:

A limit switch is mounted under the front of the robot between the tape sensors. A wide piece of
masonite hung from the front contacts the limit switch whenever a wall is encountered. Pieces of
foam are used to damp the movement of the bumper to avoid bouncing.

Ball System:

Our strategy for the game is to collect 5 balls at a time from the dispenser, deposit them in goal #3,
and repeat. Since the ball dispenser drops the balls from above, we designed a funnel (made of a
paper hat from In-n-Out Burger) that directs the balls to the top of a slanted plastic tube. The 5 balls
line up in the tube and are released all at once into the goal. The stopper on the front of the tube is a
moustache-shaped piece of Masonite mounted to a 180° servo.

Board Mounting:

The vertical walls of the robot serve to support the funnel for the ball system, but more importantly,
they support all the circuit boards! The two walls are identical, but mounting holes are spaced to
allow for 3 of our perf-boards on one side and 1 perf-board and the E128 on the other side. Stand-
offs are used to provide necessary separation.

Handy Buttons:

The robot has two push-buttons and two toggle switches mounted on the back. One toggle switch is
the software emergency stop, and one button is a “next state” button that lets us, for example, start
the robot when people have stolen or otherwise mis-placed the flashers. The other push button was
intended to update the LCD screen, and the other toggle is unassigned, but neither one is actually
used.

Electrical Design

We wanted our electronics to be simple, accessible, and easy to debug. We planned to modularize
the circuitry by putting different functions on separate boards. Each board receives +5V/GND from
the power board, and molex connections are used to transmit signals from board to board. Thus, we
have 6 boards in total:

* Power board

* LCD board

* Beacon board

* Tape sensor board

* E128 board

* Connector board

Power Board:

The power board has screw terminals for connecting the batteries and supplying drive-current to the
motors. These are physically laid out next to each other to minimize conductive noise on the ground
rail. A LM7805 regulator (with heat sink!) provides a steady 5V supply. An array of two-pin molex
headers provides 5V/GND connections for all the other boards. The entire robot is powered by a pair
of 7.2V (nominal) rechargeable Ni-Cad battery packs, wired in series for a total of about 15V. We
placed 100k pots across the batteries and calibrated them to provide an analog voltage proportional
to the voltage of the “lower” battery, and the sum total of both batteries. This is read by the E128 so
that we can always know the current state of charge of the batteries.

I'TOW
Pl
rJ

f—t

LI %ﬁéﬁé

,
F

X

Gl
b

|

o
B
Al
-

f—t

1

L4

e | b

Fw W W N
o e
-

Sdr
-

1
3 s
= 2
1
&
= 3
I:J“J -
GND
V+
g = 2 | 1 15V
= 1 2 I5V
e 1
52 B 2 Y
1 GND
e 2 | GND
1 — ND b

LCD Board:

Our original design called on having an LCD screen that would print out a range of game state
information to facilitate debugging, and add a splash of pizzazz. The LCD board has a 5-pin molex
connector that receives SPI data from the E128, as well as a 2-pin molex connector for additional
control lines. A shift register on the board takes the received serial data and outputs it in parallel for
the LCD. Finally, a 2-pin molex provides 5V/GND from the power board. Unfortunately, printing to
the LCD requires extensive use of blocking code, and it was prohibitively slow to print updates to the
screen continuously, so we decided to not include the LCD on the final robot.

c12 P1
1
2
10uF =
Ul & 122
GND |— GND {GND : ps7iss |
- Vcontrast —} -
v _CC = WV 5 e PEGSCK = SCE.
vEE 2 oo 2|
RS |— © essmost 2
) 5 __ 1P3 o 5
R] PP) & PP1 PEALEO
= 6 i E128_IP2
N
,, DBO =
= -
& DBl 8 - QB V e |——C 5
~ DE2 2 = Q. QA 2
~ DB3 = ! QD SER 4 —os1
11 4 " 13 -
DB4 QE o OE GND
7))
12 3 kot 12
DBS3 - QF 5 ROK <88 >
13 g e -
DB QG SRCLK 3CK
DB7 Lt : QH SRCLR " 55 N
LED: ANODE GHND QO H z
LED: CATHODE ghileis

LCD

Beacon Board:

The beacon sensor was one of the last pieces designed for this project. The basic design uses a
photo-transistor to receive incoming beacon pulses. The signal is passed through a transresistive
amplifier, a high-pass filter (-3dB at 340 Hz), a non-inverting amplifier (gain 7.0), and a Schmidt
trigger. The output is connected to a 2-pin molex for sending to the E128. As usual, a 2-pin molex is
included for power connections.

C7 P32
S 1
2
10uF
Power

R21

i -
;)
: - OutD Virtual Ground
E—. 1B 22
' InD- 10K
10K

)
(Viral Growd >>— InA+ 5 D+ |—=

4

5V O LV

LMo6l144
-

EP R OUT >°— InB+ InC —10

6 9 E—1

InB- InC-

OuB OutC :
! LMs144
L1 R25 4%
M—“I-
R30 LoadRes HP Filiter OUT

P33
v 1 Beacon Output
5\)
I:]REG) Us =
13K . k=
ol l _ OowA Ouwc —2 £
2 =
. 2 owB Owd —F E
- [F- svo—-—oq~ v GND —'12 |
100K : -
28 . 4 e 11
1K By —
. i
. EE
29 6 9
= 2 mA- o+ —2
—— InA+ o RS

— LM339

Tape Sensor Board:

This board has the circuitry for all 3 tape sensors, as well as the flash sensor. There is a 4-pin molex for
each tape sensor. Each molex provides +5V/GND for the IR LED, with 200 ohms of series resistance,
and +5V/signal for the phototransistor. The signal is connected to a potentiometer so that all three
tape sensors can be tuned to the same sensitivity, which simplifies the software. The output from
each tape sensor is buffered using a quad op-amp chip, and connected to a 4-pin molex for sending
to the E128. The fourth pin of this molex is for the flash sensor signal. The flash sensor is simply a
phototransistor connected to a high-pass filter. In software, the ambient light-level is automatically
calibrated each time the robot is booted. The flash level is set very slightly above this so that it is very
sensitive to flashes received from anywhere.

i)
3
5 5
= g
-~ MB
< - "D =3
—| —fdon S| B - — NS (=
= = o, =
s = -
ot
-
=2 =
=
=
iy =
=)]
]] i w
%Z%E = —ca | E
E B, il
R .
=
= i
1L
_ 1
4 =g
—) rvw-l o
o iF] t A
—| —m e | Bl L
e o
o L] "
| :
=
o = »
- == =
= in|C 4r)
ong —1
= 2
e e v
| | wn | — H
g
=T o] | O
= | |
&h
2 O A £ = & &)
T} = " — oy) =
N —caen = | B = = = = = = =
o B St = R = —
s g = = o
= — e ,g FFIOINT
T — a —~
T = z 5 o 2
0 - = = = = = -
= = = = = - = — O
o
N =
;;7—_'
|3
e
- 3 o =
(&) = = =
T < #(E7 S

E128 board:
This is the protection board that the SPDL provides for the E128. It has a 20-pin header, a 24-pin
header, and a 5 pin molex for SPL. It receives 15V, unregulated, directly from the power board.

E128 PIN TABLE
JP6 24 Pin RIBBON CABLE -->
Use Name Pin Number Pin Number Name Use
NC 1 24 NC
RMOTOR EF PU7 2 23 GND
LMOTOR EF PU6 3 22 PU5 LMOTORIN2
PTO 4 21 PU4 RMOTORIN2
IR BEACON RISE PT1 5 20 PU3
IR BEACON FALL PT2 6 19 PU2 SERVO POS (PWM)
PT3 7 18 PU1 LMOTOR IN1 (PWM)
PT4 8 17 PUO RMOTORIN1 (PWM)
PT5 9 16 PE7
PT6 10 15 PT7
PEO 11 14 PE1
NC 12 13 NC
<-- RIBBON CABLE JP5 20 Pin
Use Name Pin Number Pin Number Name Use
GND 1 20 GND
NEXT STATE BUTTON PS2 2 19 PP5 LCD TOGGLE
E-STOP BUTTON PS3 3 18 PP4 UNASSIGNED
LCD RS PP2 4 17 PP3 BUMP SENSOR
LCD EN PPO 5 16 PP1
BATT2 VOLTAGE PADO 6 15 PAD4 RTAPE SENSOR
BATT1 VOLTAGE PAD1 7 14 PAD5 LTAPE SENSOR
PAD2 8 13 PAD6 CTAPE SENSOR
PAD3 9 12 PAD7 FLASH SENSOR
GND 10 11 GND
<-- KEY JP2 5 Pin
Use Name Pin Number
SHIFT REGISTER PS7/SS 1
SHIFT REGISTER PS6/SCK 2
SHIFT REGISTER GND 3
SHIFT REGISTER PS5/MOSI 4
SHIFT REGISTER PS4/MISO 5

Connector Board:

All input and output connections for the E128 and routed through this board. Ribbon cables connect
the E128 to this board. Outputs from this board include a 3-pin molex for each motor driver, a 3-pin
molex for the servo, and a 2-pin molex for the LCD control lines. All the signals from the other boards
are received on this board, including tape sensing, flash sensing, beacon sensing, and the battery
voltage indicator. The tape sensor and beacon sensor inputs to the E128 have a 4.7k pull-down
resistor to load the opamps that are transmitting the signals, to minimize the effects of capacitive
noise on the signal lines. Finally, the connector board has five 2-pin molex connectors that are
connected to the four “handy buttons” (e-stop, LCD update, next state, unassigned) and the bumper
switch.

S
3 5
= u
o I
g]
— =
ol vl = =
T e N = =
I o e
& L L 0L & 0L o
od[- BT
o =)
-] 2 2 £ B @D E B B2 E =
= = = ol o O S T o T o ||
o = o R < 11]
H meam |5 8~ |2 S =
B 'i}: =2
m|l =+ wl & o =] ™
=
)
Al mram | B
g =
- -
a 3 =
=] = =
:i-—N:ﬁ.—'\lii Ml —m |5
= g B = B =

“I.

23

2l

[1e 10K
2l

2
Rld 10K

Rl 10K

G
|

= =

AV
=1

k.4
- B e I =
= = £ = 4 =
= mlo B B /& o|H
- = il iy
=2 2 .
a s = = - = w = =
= Hl—n |2 Bl —ea | %
o =1 =3 =

Mexbbk

Muzds bk

25
JE2T

1

2
Bt fvol

100l

LT

S

Board Photos

Beacon:

Shielding considerations:

We took steps to avoid noise in our system. Conductive noise was minimized by putting the high-
current connections as close to the battery source as possible. Inductive noise was avoided by
twisting all connector cables to minimize flux area. Capacitive noise was reduced by creating a
grounded shield of aluminum foil on the bottom of the robot, as well as shielding the high-current
wires running from the power board to the motor drivers. We found that our most noise-sensitive
system was the beacon sensor, and the shielding did wonders to improve our signal.

Selected component values and calculations:

Tape Sensor Board:
Pots for tuning the IR tape sensor outputs to the same value:

Right Tape Pot: 260 k
Left Tape Pot: 333 k
Center Tape Pot: 36.2 k
Current flowing in IR LED:

Series resistor: 100 ohms
Drop across LED: 1.7 \"
Current: (Vcc-1.7)/R 33 mA

Beacon Board:
Signal Amplification:

Transresistive Feedback: 215 k
Beacon Amplifier Rf: 408 k
Beacon Amplifier Ri: 6.82 k
Beacon Amp Gain (1+Rf/Ri): 7.0
High-pass filter:

HP resistor: 4.7 k
HP capacitor: 0.1 uF
HP corner frequency: 340 Hz
Beacon frequency: 125 kHz

- Filter eliminates low-frequency noise from other light sources

Power Board:

Battery voltage dividers (100k pot):

Battery Voltage 1: 59k / 100k
Battery Voltage 2: 33k / 100k
Quiescent current draw from voltage regulator:
(Approximately 3*IR_LED_CURRENT + odds and ends)
Actual steady current draw: 125 mA
Maximum 7805 rating: 1000 mA

- within maximums

Motor Drivers (TLE5206-2):

Rated continuous current: 5 A
Rated peak current: 6 A
Max Stall Current:

Motor coil resistance: 1.8 ohms
Max supply voltage: ~16 V
Max stall current (V/R): 8.9 A

Average operating stall current (60% duty cycle):

- Over continuous limit, but we never stalled. Performance was excellent.

Connector Board:
Filter for debouncing button presses:

Resistance: 10 k
Capacitance: 2.2 uF
Discharging time constant: 22 mSec

- Ultimately we did this in code anyway

Code Listing

balldispense.h

#ifndef BALLDISPENSE
#define BALLDISPENSE

//FUNCTION PROTOTYPES

void InitServoPWM(void);

void Open_Ball Dispenser(void);
void Close Ball Dispenser(void);

#endif BALLDISPENSE

balldispense.c

[/ =—mm————— balldispense.C ————————————- //
//-- code courtesy of BurgerStache --//

[/ = e [1]] === //

//Standard Libraries
#include "headers.h"

//Initializes the PWM subystem on the E128
void InitServoPWM(void)
{
//Initialize the clock
PWMSCLB = POSTSCALER B; //scale the A clock by / (2*75)

PWMPRCLK |= 0x40; //use clock A with M/16 scalar

//Initialize PWM for servo

PWME |= BIT2HI; //enable PWM on bit 2

MODRR |= BIT2HI; //map T2 to PWM

PWMCLK |= BIT2HI; //use SA (scaled clock)

PWMPOL |= BIT2HI; //select the PWM polarity. 1 = output initially high
PWMCAE |= BIT2HI; //center align the PWM signal

PWMPER2 = SERVO_PWM_PERIOD;

PWMDTY2 = SERVO_CLOSED_DUTY; //contains the count of the total number of cycles on either clock
A or SA that will constitute the active period for PWM channel 0
}

void Open_Ball Dispenser(void)
{PWMDTY2 = SERVO_OPEN_DUTY;}

void Close Ball Dispenser(void)
{ PWMDTY2 = SERVO_CLOSED_DUTY;}

#ifdef BALLDISPENSE_TEST

void main(void)

{
char i;
InitAll();
//Cycle through .5 ms pulse to 2.5 ms pulse lengths
while (TRUE)
{
/*
for(i=2; i<=13; i++)
{
PWMDTY2 = i;
printf("DUTY CYCLE: %d \r\n", i);
Wait(1500);
}*/
printf ("OPEN\r\n");
Open_Ball Dispenser();
Wait(1500);
printf ("CLOSED\r\n");
Close_Ball Dispenser();
Wait(2000);
}
}

#endif

beacon.h

#ifndef BEACON
#define BEACON

#include "headers.h"

// Public Function Prototypes

void InitBEACON(void);

char CheckForSpecificBeacon(char beaconDuty);
int CheckForBeacon(void);

//Private function prototypes

#endif

beacon.c

#include "headers.h"

static unsigned int uPeriod;

static unsigned int uPulseWidth;

static unsigned int uLastRise;

static unsigned int uLastFall;

static int DutyCycle;

static unsigned char counter = 0;

static unsigned int DutyHistory[DUTY_ HISTORY LENGTH]=0;
static char DutyHistoryIndex = 0;

static char RisingFlag = 0;

A Module Code —=—————— */
void InitBEACON(void)
{

TIMO_TSCR1 = _S12_TEN; /* turn the timer system on */

TIMO_TSCR2 = _S12_PR2; /* set pre-scale to /16 = 1.5MHz timer clk */

//Set up 0C4 to time the control loop.

TIMO_TIOS = _S12 IO0S4; /* set cap/comp 4 to output compare rest are inputs */
TIMO_TCTL1 = TIMO_TCTLl & ~(_S12_OL4 | _S12 OM4); /* no pin connected for 0C4 */
TIMO_TC4 = TIMO_TCNT + PERIOD_T; /* schedule first rise */

TIMO_TFLGl = _S12_C4F; /* clear 0C4 flag */

TIMO_TIE |= _S12_C4I; /* enable OC4 interrupt */

//Set up IC5 to capture rising edge.

TIMO_TCTL3 |= (_S12_EDGS5A);
TIMO_TFLGl = _S12_C5F; /* clear IC5 flag */
TIMO_TIE |= _S12_C5I; /* enable IC5 interrupt */

//Set up IC6 to capture falling edge

TIMO_TCTL3 |= (_S12_EDG6B);
TIMO_TFLGl = _S12_C6F; /* clear IC5 flag */
TIMO_TIE |= _S12_C6I; /* enable IC5 interrupt */

//Turn on them interrupts
EnableInterrupts;

}

//returns true if the 30% beacon is found
char CheckForSpecificBeacon(char beaconDuty)

{
DutyCycle = CheckForBeacon();

if ((DutyCycle < (beaconDuty + DUTY TOLERANCE)) && (DutyCycle > (beaconDuty - DUTY_ TOLERANCE)))
return TRUE;

else return FALSE;
}

//Falling edges
void interrupt _Vec_ timOch6é SignalFallTimer (void)

{
uPulseWidth = TIMO_TC6 - uLastRise; /*Calculate high time*/
uLastFall = TIMO_TC6;
TIMO_TFLGl = _S12_C6F; /* clear IC3 flag */

}

//Rising edges

uPeriod = TIMO_TC5 - uLastRise; /*Calculate period*/
uLastRise = TIMO_TC5;

TIMO_TFLGl = _S12_C5F; /* clear IC3 flag */
RisingFlag 1;

}

//Timer for testing
void interrupt _Vec_timOch4 ControlTrigger (void)

{
PTT "= 128;
TIMO_TC4 += PERIOD T; /* program next compare */
TIMO_TFLGl = _S12_C4F; /* clear 0C4 flag */
//EnableInterrupts;
//counter += 1;

}

//Looks for the nearest whole number of detected duty cycle
//returns the duty cycle
int CheckForBeacon(void)

{

int 1i;

//Check to make sure we aren't looking at a noise pulse
if (uPulseWidth < MIN_PULSE_WIDTH)
DutyCycle = 0;
else if(uPulseWidth > MAX PULSE_WIDTH)
DutyCycle = 0;
else if(RisingFlag == 0)
DutyCycle = 0;
else
DutyCycle = (uPulseWidth*10)/(uPeriod/10);
RisingFlag = 0;

//Increment duty history index to place the duty cycle

DutyHistoryIndex++;

if (DutyHistoryIndex >= DUTY_HISTORY_LENGTH)
DutyHistoryIndex=0;

//Place current duty cycle into appropriate position in history array
DutyHistory[DutyHistoryIndex] = DutyCycle;

//Check for a stable duty cycle. If it isn't stable, set it to zero (but not in history)
for(i=0; i<DUTY_HISTORY_LENGTH; i++)

{

if ((DutyHistory[i] < DutyCycle - DUTY TOLERANCE) || (DutyHistory[i] > DutyCycle +

DUTY TOLERANCE))
{
DutyCycle=0;

}
}
//printf (" CheckForBEACON = %d\r\n", DutyCycle);

return DutyCycle;
}

#ifdef BEACON_TEST
void main(void){
InitAll();

printf("Beacon testing\r\n");

Turn(LEFT, DUTY_BEACON_SEEK) ;

while (TRUE) {
printf ("CheckForBEACON = %d\r\n", CheckForBeacon());
printf("CheckForThirtyBEACON = %d\r\n", CheckForSpecificBeacon(30));
printf("CheckForFiftyBEACON = %d\r\n", CheckForSpecificBeacon(50));
printf("CheckForSeventyBEACON = %d\r\n\r\n", CheckForSpecificBeacon(70));
Wait(250);

}
#endif

defines.h

#ifndef DEFINES
#define DEFINES

//Test defines

#define REAL_DEAL //UNCOMMENT TO RUN OUR NON-TEST MAIN FUNCTION
//#define SPI_SHIFT REGISTER_TEST

//#define LCD_TEST

//#define DRIVING_ TEST

//#define PWM_TEST

//#define DEBUG_RUG_TEST

//#define BALLDISPENSE_TEST

//#define SENSORS_TEST

//#define BEACON_TEST

//#define LINE_FOLLOW_TEST

//#define CALIBRATION_MOVE_TEST

#define SIMULATE EVENTS //use if you want to simulate events with keyboard presses

//RUN WITH EACH BATTERY AT 8.1V

//Convenience
#define TRUE 1
#define FALSE 0
#define SUCCESS 0
#define FAILURE 1

//main

#define LINE_1 0x80
#define LINE_2 0xCO
#define LINE_3 0x94
#define LINE_4 0xD4

//flash
#define FLASH_TOLERANCE 20 //and so it is.

//tape

#define TAPE_THRESH_HIGH 800 //and so it is.
#define TAPE_THRESH LOW 0

#define RIGHT TAPE 4

#define LEFT_TAPE 5

#define CENTER_TAPE 6

//timer definitions (can use timers 0 through 8) ??NOT SURE FOR THE E128 WHICH ARE AVAILABLE??

#define TIMER WAIT 0 //timer for the blocking wait function
#define TIMER STATE 1 //timer for states of a specified duration
#define TIMER GAME 2 //timer to keep track of game end

//timer lengths

#define TIME_DUMP 2750 //1250 is ok, but we're too fast!
#define TIME GAME 1200 //in tenths of seconds (not ms)
#define TIME_COLLECT 1500 //time to sit in front of the dispenser (with grace period)

#define ANGLE_BEACON_OVERSHOOT 5 //ANTI-overboost to get centered on the beacon
#define ANGLE_PASS_FAKE_ BEACON 10 //also very small for now

#define DIST BACKUP 3 //0ld=4 back up 4 inches from the ball dispenser
#define DIST_ OFFTAPE_CLEARANCE 2 //how far to go when going off the tape before switching to TAPESM
#define DIST BOOST 21 //fuck yes

#define DIST CLEAR_SQUARE 8 //dist off of initial position (green square)

#define DIST BACK OFF_GREEN T 2 //back off before turning to goal

//tape following movement duty cycles
//BE WARNED: duties less than 30 are pretty useless

#define DUTY_APP 40 //01d=30 both wheels move forward with this duy as we approach
#define DUTY_ PIVOT 40 //01d=30 the wheels move in opposite directions with this duty when we
pivot

#define DUTY BOP_OUTER 40 //0ld=30 the duty of the outer wheel during bopping

#define DUTY BOP_INNER 0 //o0ld=0 the duty of the inner wheel during bopping

#define DUTY_GO 40 //01d=30 both wheels move forward with this max duty when we're
going

#define DUTY BEACON_SEEK 40 //0ld=30 duty to use during beacon seeking

#define DUTY DEFAULT_ TURN 50 //0ld=30 duty to use during beacon seeking

#define DUTY DEFAULT MOVE 60 //0ld=40 duty to use during moving while NOT tape following

#define DUTY_ FIRST APP 50 //off of beacon sensing, moving past first line

#define DUTY GENTLEBUMP 40 //old=30

#define DUTY_ BOOST 100 //YES! YES!

//game stages

//waiting for the electronic flash and getting oriented

#define ST_START 10 //waiting for electronic flash

#define ST BEACON 11 //scan L toward the beacon, stop when we see a blip

#define ST BEACON_3 14 //move past the blip w/o looking for beacons so we don't get stuck.
risk missing a beacon.
#define ST _CLEAR SQUARE 15 //move forward a bit to get away from the green square

//Hello, dispenser. Nice to meet you! travelling toward the dispenser for the first time

#define ST_MIRROR CHECK 20 //go forward until L or R is hit to determine what side
we're on

#define ST _MEET DISPENSER 21 //going forward until the first black line is passed

#define ST MEET_DISPENSER 1 22 //correction factor

#define ST MEET_ DISPENSER_2 23 //approaching tape from the right until T is hit (nested tape
SM)

//collecting balls from the dispenser

#define ST COLLECT_BALLS 30 //go forward till we hit our bumper

#define ST COLLECT_ BALLS_1 31 //sitting still till we get the first ball (timer)

#define ST_COLLECT_ BALLS_2 32 //back up for a short amount of time (timer)

//now that we're full of balls, go to goal three

#define ST_GOTO_GOAL 40 //turning 90 degrees left

#define ST GOTO_GOAL_1 41 //GO FORWARD A LITTLE BIT UNTIL WE'RE OFF THE TAPE, THEN ENABLE
TAPE SENSING

#define ST_GOAL_BOOST 98

#define ST _GOTO_GOAL_2 42 //GOING FWD UNTIL TAPE IS HIT (approach from left)

#define ST _GOTO_GOAL_3 43 //not used

#define ST _GOTO_GOAL 4 44 //backing up a bit

#define ST _GOTO_GOAL_5 45 //turning R 90 degrees

#define ST _GOTO_GOAL_6 46 //going forward until bumper is pressed

//release them all

#define ST DUMP 50 //dumping, plain and simple (timer)

//go back to the dispenser
#define ST REVISIT_DISPENSER 60 //backing up a bit

#define ST REVISIT_DISPENSER_1 61 //turning around 180

#define ST REVISIT DISPENSER 2 62 //going forward until the green line is passed
#define ST_RETURN_BOOST 99

#define ST REVISIT DISPENSER_3 63 //approaching tape from the left side until T is hit

//ending sequence
#define ST END 70 //do some sort of LED light show

//tape states

#define ST APPR 110
#define ST _APPL 111
#define ST _PIVOTR 112
#define ST _PIVOTL 113
#define ST BOPR 114
#define ST _BOPL 115
#define ST GO 116

//general events

#define EV_NO_EVENT 301
#define EV_ENTRY 302
#define EV_EXIT 303
#define EV_ERROR 304

//game events

#define EV_ESTOP 201

#define EV_FLASH 202

#define EV_BEACON 203 //found a verified beacon

#define EV_FAKE_ BEACON 204 //verification resulted in a wrong beacon
#define EV_BEACON_BLIP 205 //found what might be a beacon

#define EV_BUMP 206

#define EV_GAME_OVER 207

#define EV_STATE TIMEUP 208

#define EV_NEXT 209

#define EV_ALREADY MIRRORED 210

//tape events

#define EV_RLC 0x07

#define EV_RL 0x03

#define EV_RC 0x05

#define EV_LC 0x06

#define EV_R 0x01

#define EV_L 0x02

#define EV_C 0x04

#define EV_NOTAPE 0

#define EV_ATT 108

//helpers

#define AD_PIN_ASSIGN "AAAAAAAA" //All analog inputs
#define BATT V1 77 //0 to 1023 = 0 to 5v. 896=7.76v This value scales AD in to tenths of a
volt

#define BATT_ADI1 896

#define BATT V2 161 //908=16.1v

#define BATT_AD2 908

#define
#define
#define
#define
#define
#define
#define

R_MOTOR 1 //use to ID the right motor
L_MOTOR 0 //use to ID the left motor
BOTH_MOTORS 2 //makes both motors do their thing
FORWARD 1 //motor pushes the robot forward
BACKWARD 0 //motor pushes the robot backward
RIGHT 1

LEFT 0

//dc motor PWM

#define
#define
#define
#define
#define

PRESCALER 2 //24Mhz clock / 2 = 12 MHz

POSTSCALER 3 //12 MHz / (3*2) = 2000 kHz

MS (24000/(PRESCALER*POSTSCALER*2)) // =1000 defines the number of ticks in a microsecond
MOTOR_PWM_PERIOD 100 //(MS/10) //MS/10 = 20kHz

DEFAULT MOTOR DUTY (MOTOR PWM PERIOD) //default duty cycle = 100%

//ball dispense

#define
#define
#define
#define
#define
#define

PRESCALER B 32 //24Mhz clock / 16 = 1500 Khz

POSTSCALER_B 75 //24Mhz / 16 / (2*75) = 10 Khz

MS_B (24000/(PRESCALER B*POSTSCALER B*2)) // = 10 defines the number of ticks in a ms
SERVO_PWM_PERIOD 100 //(MS_B/100) = 100Hz

SERVO_OPEN_DUTY 13

SERVO_CLOSED_ DUTY 3 //used to be 2

//beacon

#define
#define
#define
#define
#define
#define
#define
#define

MS T 1500
PERIOD T (1*MS_T)
PERIOD THRESH HIGH 1100
PERIOD_THRESH_LOW 900
DUTY_ THRESH_HIGH 80
DUTY THRESH LOW 20

MIN PULSE_WIDTH 200
MAX_PULSE_WIDTH 1000

//beacon decision making

#define

DUTY_HISTORY_LENGTH 1 //make this lower to increase our beacon-finding

sensitivity

#define
#define
#define
#define

//Debug
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

DUTY_TOLERANCE 10

BEACON_VERIFY_CYCLES 20 //check twenty times to verify we're at our beacon
BEACON_VERIFY_ERRORS_ALLOWED 5 //how many times can we blow it

BEACON_TO_FIND 50 //which beacon do we want to find?

NUM_LCD_SCREENS
NUM_VARS_ON_FIRST SCREEN
NUM_VARS_ON_SECOND_SCREEN
MAX DEBUG_VARS
DEBUG_GAME_TIME
DEBUG_EVENT
DEBUG_GAME_STATE
DEBUG_TAPE_STATE
DEBUG_BATTV1
DEBUG_BATTV?2

0 //MAKE SURE THIS IS BIGGER THAN THE NUMBER OF DEBUG VARS

oL NN

s WN

LIT117777077777077777777777771777777

/7

LCD ARRAY ADDRESSES //

LIT1111771077777077777777777777777777

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

#define
#define
#define
#define

LINE_1 POS_1 0x80
LINE 1 POS 2 0x81
LINE_1 POS_3 0x82
LINE_1 POS_4 0x83
LINE_1 POS_5 0x84
LINE_1 POS_6 0x85
LINE_1 POS_7 0x86
LINE_1_POS_8 0x87
LINE_1 POS_9 0x88
LINE 1 POS_10 0x89
LINE 1 POS_11 0x8A
LINE 1 POS_12 0x8B
LINE_1_POS_13 0x8C
LINE 1 POS_14 0x8D
LINE_1_POS_15 O0x8E
LINE_1_POS_16 O0x8F
LINE_1_POS_17 0x90
LINE_1_POS_18 0x91
LINE_1_POS_19 0x92
LINE 1 _POS_20 0x93

LINE_2_POS_1 0xCO
LINE_2_POS_2 0xCl
LINE_2_POS_3 0xC2
LINE_2_POS_4 0xC3

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

#endif

LINE 2_POS_7

LINE_2_POS_8

LINE_2_POS_9

LINE_2_POS_10
LINE 2 POS_11
LINE 2 POS_12
LINE_2_POS_13
LINE 2 POS_14
LINE_2_POS_15
LINE_2_POS_16
LINE 2 POS_17
LINE_2_POS_18
LINE_2_POS_19
LINE_2_POS_20

LINE_3_POS_1
LINE_3_POS_2
LINE_3_POS_3
LINE_3_POS 4
LINE_3_POS_5
LINE_3_POS_6
LINE_3_POS_7
LINE_3_POS_8
LINE_3_POS 9
LINE_3_POS_10
LINE_3_POS_11
LINE_3_POS_12
LINE_3_POS_13
LINE_3_POS_14
LINE_3_POS_15
LINE_3_POS_16
LINE_3_POS_17
LINE_3_POS_18
LINE_3_POS_19
LINE_3_POS_20

LINE 4 POS_1
LINE 4 POS 2
LINE_4_POS_3
LINE 4 POS 4
LINE_4_POS_5
LINE_4_POS_6
LINE 4 _POS 7
LINE_4_POS_8
LINE_4_POS_9
LINE_4_POS_10
LINE 4 POS_11
LINE 4 POS_12
LINE_4_POS_13
LINE 4 POS_14
LINE_4_POS_15
LINE_4_POS_16
LINE 4 POS_17
LINE_4_POS_18
LINE_4_POS_19
LINE_4_POS_20

0xC6

0xC7

0xC8
0xC9
0xCA
0xCB
0xCC
0xCD
0xCE
0xCF
0xDO
0xD1
0xD2
0xD3

0x94
0x95
0x96
0x97
0x98
0x99
0x9A
0x9B
0x9C
0x9D
0x9E
0x9F
0xA0
0xAl
0xA2
0xA3
0xA4
0xA5
0xAb6
0xA7

0xD4
0xD5
0xD6
0xD7
0xD8
0xD9
0xDA
0xDB
0xDC
0xDD
0xDE
0xDF
0xEQ
0xE1l
0xE2
0xE3
0xE4
0xES5
0xXE6
0xE7

driving.h

#ifndef DRIVING
#define DRIVING

//FUNCTION PROTOTYPES

void InitPWM(void);

void SetMotor (char motorID, char direction, char duty);

void Move(char direction, char duty); //moves the vehicle in a given direction

void Turn(char direction, char duty); //turns the vehicle about its pivot in a given direction
void Stop(void); //stops both motors

#endif DRIVING

driving.c

[/ =—mm—m——— driving.c ——————————-o //
//-- code courtesy of BurgerStache -//
/)= Y //

#include "headers.h"

//set MirrorFlag to TRUE if we're mirroring (playing on side B)
extern char MirrorFlag;

//Initializes the PWM subystem on the E128
void InitPWM(void){
//Initialize the clock
PWMSCLA = POSTSCALER; //scale the A clock by / (3%2)
PWMPRCLK |= 1; //use clock A with M/4 scalar (write to bit 1)

//Initialize PWM for motor 1 (TO0)

PWME |= BITOHI; //enable PWM on bit 0

MODRR |= BITOHI; //map TO to PWM

PWMCLK |= BITOHI; //use SA (scaled clock)

PWMPOL |= BITOHI; //select the PWM polarity. 1 = output initially high

PWMPERO = MOTOR_PWM PERIOD; //contains the count of the total number of cycles on clock A or SA
that will constitute the total period for PWM channel 0

PWMDTYO = DEFAULT MOTOR_DUTY; //contains the count of the total number of cycles on either clock
A or SA that will constitute the active period for PWM channel 0

//Initialize PWM for motor 2 (T1)

PWME |= BIT1HI; //enable PWM on bit 1

MODRR |= BIT1HI; //map Tl to PWM

PWMCLK |= BIT1HI; //use SA (scaled clock)

PWMPOL |= BIT1HI; //select the PWM polarity. 1 = output initially high

PWMPER1 = MOTOR_PWM PERIOD; //contains the count of the total number of cycles on clock A or SA
that will constitute the total period for PWM channel 0

PWMDTY1 = DEFAULT MOTOR_DUTY; //contains the count of the total number of cycles on either clock
A or SA that will constitute the active period for PWM channel 0
}

//Sets the duty cycle of the given motor and sets the direction output
//motorID = LEFT or RIGHT
//direction = FORWARD or BACKWARD
//duty = 0 to 100
void SetMotor (char motorID, char direction, char duty)({
//calculate the number of clock ticks to give powers to the motor
unsigned int dutyTicks;
dutyTicks = (MOTOR_PWM_ PERIOD * duty)/100;

//check to make sure the parameters are in bounds

if(duty < 0 || duty > 100){
printf("ERR: duty out of bounds in SetMotor \r\n");
return; //failure

if(!((direction == FORWARD) || (direction == BACKWARD))){
printf("ERR: direction must be forward or backward \r\n");
return; //failure

}

if(!((motorID == R _MOTOR) || (motorID == L MOTOR) || (motorID == BOTH MOTORS))){
printf("ERR: unknown motorID given \r\n");
return; //failure

}

//Set the direction and PWM based on which motor and which direction are selcted
if(((motorID == L MOTOR) && (MirrorFlag == FALSE))|| //non-mirrored, side A
((motorID == R MOTOR) && (MirrorFlag == TRUE))|| //when mirrored, switch left and right motors

PTU |= BITSHI; //set direction pin output
PWMDTY1 = (char)(MOTOR_PWM_ PERIOD-dutyTicks); //set motor PWM registers as prescribed

by the PWM subsystem. Invert duty when direction pin is high.
//printf("I'm setting left motor duty to: %d (INVERSE) \n\r",dutyTicks);

}else{
PTU &= BIT5LO;
PWMDTY1 = (char)dutyTicks;
//printf("I'm setting left motor duty to: %d \n\r",dutyTicks);
}
}
if(((motorID == R MOTOR) && (MirrorFlag == FALSE))|| //non-mirrored, side A
((motorID == L MOTOR) && (MirrorFlag == TRUE))|| //when mirrored, switch motors
(motorID == BOTH_MOTORS)) {
//set direction pin output
if (direction == FORWARD) {
PTU |= BIT4HI;
PWMDTY0 = (char)(MOTOR_PWM_ PERIOD-dutyTicks); //set motor PWM registers as prescribed

by the PWM subsystem. Invert duty when direction pin is high.
//printf("I'm setting right motor duty to: %d (INVERSE) \n\r",dutyTicks);

telse{
PTU &= BIT4LO;
PWMDTYO0 = (char)dutyTicks;
//printf("I'm setting right motor duty to: %d \n\r",dutyTicks);
}
}
}
Y — THESE FUNCTIONS SIMPLIFY OUR MOVING LIFE ——————————mmmmoem //
void Move(char direction, char duty) {
if (direction == FORWARD) {
// printf(" Now moving forward\r\n");
telse{
// printf(" Now moving backward\r\n");
}
SetMotor (BOTH_MOTORS, direction, duty);
}
void Turn(char direction, char duty)({
if (direction == RIGHT) {
//printf (" Now turning right\r\n");

SetMotor (L_MOTOR, FORWARD, duty);
SetMotor (R_MOTOR, BACKWARD, duty);

} else if (direction == LEFT) {
//printf (" Now turning left\r\n");
SetMotor (L_MOTOR, BACKWARD, duty);
SetMotor (R_MOTOR, FORWARD, duty);

}

void Stop(void){
//printf (" Now stopping\r\n");
SetMotor (BOTH_MOTORS, FORWARD, 0);

#ifdef DRIVING_TEST
void main(void){

InitAll();

//check for motor driver error flags

if (! (PTU & BIT6HI)){ //L motor error flag (low = error)
printf("ERR: Left motor driver error\r\n");

}

if (! (PTU & BIT7HI)){ //R motor error flag (low = error)
printf("ERR: Right motor driver error\r\n");

}

//30 percent power
Turn(LEFT, 30);
Wait(2000);
Turn(RIGHT, 30);
Wait(2000);

Move (FORWARD, 30);
Wait(2000);

Move (BACKWARD, 30);
Wait(2000);

Stop();

//full fifty percent power

Turn(RIGHT, 50);
Wait(2000);

Move (FORWARD, 50);
Wait(2000);

Move (BACKWARD, 50);
Wait(2000);

Stop();

Wait(2000);

}
#endif

#ifdef PWM_TEST
//should see a PWM duty cycle of 70% coming out of both ports
void main(void){

InitAll();

Move (FORWARD, 70);

}
#endif

headers.h

#ifndef HEADERS
#define HEADERS

//Standard Libraries

#include
#include
#include
#include

#include
#include

#include
#include
#include
#include
#include

"ME218_E128.h"
<hidef.h>
<mc9sl2el28.h>
<bitdefs.h>

"Sl2evec.h" /* vector addresses for
<Sl12el28bits.h> /* bit definitions */

<timersS12.h>
<stdio.h>
<math.h>
<string.h>
"ADS12e.h"

//Our libraries

#include
#include
#include
#include
#include
#include
#include
#include
#include

#endif

"balldispense.h"
"beacon.h"
"defines.h"
"driving.h"
"helpers.h"
"main.h"
"SMGame.h"
"SMTape.h"
"superLCD.h"

interrupts */

helpers.h

#ifndef HELPERS
#define HELPERS

//Function Prototypes

void Wait(int ticks);

void SetTimer (char timer, int ticks);

char CheckTimerExpired(char timer);

void InitializeGameTimer (void);

int GetGameTime(void);

char CheckGameTimerExpired(void);

void CheckBattVoltages(void);

int AngleToTime(int degrees, char duty);
int DistanceToTime(int inches, char duty);

#endif

helpers.c

[/ =—m e helpers.c ——————————- //
//-- code courtesey of BurgerStache -//

#include "headers.h"

//declare MODULE LEVEL VARIABLES
static int gameTimeSeconds = 0; //ACTUALLY TENTHS OF SECONDS!

//set MirrorFlag to TRUE if we're mirroring (playing on side B)
extern char MirrorFlag;

//Waits for a number of milliseconds given by ticks (blocking)

void Wait(int ticks){
//uses timer 0 for blocking WAIT, which is one of 8 possible timers
TMRS12_InitTimer(0,ticks);
while(TMRS12_ IsTimerExpired(0) != TMRS12_EXPIRED);

}

//sets a timer to count down

//input the length of the timer in MS and the ID of the timer

void SetTimer (char timer, int ticks){
printf(" Timer %d set with ticks = %d\r\n", timer, ticks);
TMRS12_InitTimer(timer,ticks);

}

//returns true if the given timer is expired
char CheckTimerExpired(char timer){

char timex = (TMRS12_IsTimerExpired(timer) == TMRS12_EXPIRED);
if (timex == TRUE){
printf(" Timer %d expired\r\n", timer);

TMRS12 ClearTimerExpired(timer); //clear the timer so we don't keep creating events
}
return timex;

}

//because a 120 second timer would overflow the limits of our timers,
//we are keeping track of the game time in one second increments with a counter
void InitializeGameTimer (void){
//set initial countdown clock for game time
TMRS12_InitTimer (TIMER GAME,100); //time for one second
}

//returns the game time in tenths of seconds
int GetGameTime(void){
return gameTimeSeconds;

}

//check game timer must be continually called in the check function
char CheckGameTimerExpired(void){
char timex = (TMRS12_IsTimerExpired(TIMER_GAME) == TMRS12_EXPIRED);
if (timex == TRUE){
gameTimeSeconds++;
TMRS12_InitTimer (TIMER GAME,100); //time for one second
//SendToDebugRug (gameTimeSeconds, DEBUG_GAME TIME); //USE FOR
DEBUG
}
//if the game is over, clear the timer and return true
if (gameTimeSeconds >= TIME_GAME) {

return TRUE;

}
return FALSE;

}

//Prints the battery voltages to the debug rug
//battl gives the voltage of the battery connected to ground on port AD1l
//batt2 gives the total voltage of the two batteries in series on port AD2
void CheckBattVoltages(void){

short battADl,battAD2;

int battVvl,battv2;

battADl = ADS12 ReadADPin(1);
battAD2 = ADS12_ReadADPin(0);
battVvl = (((long)battADl)*BATT V1)/BATT ADl; //convert AD value to calibrated voltage
battv2 (((long)battAD2)*BATT V2)/BATT AD2;

//send the battery voltages to the debug rug
//SendToDebugRug(battVl, DEBUG_BATTV1);
//SendToDebugRug(battV2, DEBUG_BATTV2);
printf("lower batt V = %d dv\r\n",battVvl);
printf("batt series V = %d dv\r\n",battVv2);

}

//converts an angle to an amount of time to turn

//remember to take duty cycle and battery voltage into account!

//lower batt V = 78 dv

//batt series V = 157 dv

int AngleToTime(int degrees, char duty) {
//this function is calibrated to work best at 30% duty, but it extrapolates as well
return (((degrees*10)/(duty-20))*15); //old = *20, *22, no subtraction from duty

}

//given a number of inches to travel, how many ticks should we run for?
int DistanceToTime(int inches, char duty)({

return (((inches*104)/(duty-20))*15);
}

main.h

#ifndef MAIN
#define MAIN

//Function Prototypes
void InitAll(void);
int CheckEvents(void);

//private parts

char CheckMirrorSwitch(void);
char CheckBump(void);

static char CheckRTape(void);
static char CheckLTape(void);
static char CheckCTape(void);
static char CheckEstop(void);
static char CheckNext(void);
static char CheckFlash(void);
static char CheckBeacon(void);
static char CheckTape(void);
static char CheckLCDButton(void);

#endif

main.c

e main.c ————————————o //
//-- code courtesey of BurgerStache -//

#include "headers.h"

//DECLARE GLOBAL VARIABLES
//set MirrorFlag to TRUE if we're mirroring (playing on side B)
char MirrorFlag = FALSE;

//MODULE LEVEL VARIABLES

//create persistent variables that hold the previous states of all sensors

///when the state of a sensor changes, then we create an event accordingly
//variables are initialized only the first time this code is run

static char estopState;

static char nextState;

static char flashState;

static char bumpState;

static char tapeState = 0; //a character which holds bits corresponding to the L, C, and R tape
static char newTapeState;

static char lcdState;

static short flashInitialAD; //value of the flash analog input when robot is started

#ifdef REAL_DEAL
void main(void){
//Initialize all variables
InitAll();
//start the master state machine initialization
StartGameSM() ;
//check for and handle events
while (TRUE) {
RunGameSM(CheckEvents());
}

}
#endif

//Initialize ports, timers, etc. when the program begins
//Called only once when the program beings
void InitAll(void) {

printf("Welcome to me.\r\n");

//Initializes AD ports
if(ADS12_Init(AD PIN ASSIGN) != ADS12 OK)
printf("ERR: AD Initialization unsuccessfull\r\n");

//Initialize timer
TMRS12 Tnit(TMRS12 RATE 1MS);

//Set port directions

DDRP = (BITOHI | BITI1HI); // Set pins 0 and 1 to outputs, the rest are inputs
DDRT = 0x00; //Set port T to be inputs

DDRU = OxFF; //All port U are outputs

DDRS = 0x00; //Set port S to be inputs

PTP &= (BITOLO & BITILO); // Set pins 0 and 1 to low to make sure we are set for the LCD
initialization

//Initialize various functionalities

InitSPI(); //Initialize SPI to talk to our shift register to enable LCD printouts

InitLCD(); //Initialize our LCD screen by sending a series of commands (must occur
after SPI is initialized)

InitPWM(); //Initialize PWM (in driving module)

InitServoPWM(); //Initialize ball dispensing servo PWM
InitBEACON(); //Initialize input captures for measuring Duty Cycle of signal (in beacon module)

//Initialize initial state of actuators

lcdState = CheckLCDButton();

estopState = CheckEstop();

nextState = CheckNext();

flashState = CheckFlash();

bumpState CheckBump() ;

tapeState = CheckTape(); //a character which holds bits corresponding to the L, C, and R tape

//set initial flash AD value
flashInitialAD = ADS12_ReadADPin(7);

//Check and print battery voltages
CheckBattVoltages();

//Set motors to begin at a stop
Stop();
}

//main event checker for the state machines
int CheckEvents(void)
{

int CurrentEvent = EV_NO_EVENT;

int KeyStroke;

//Check for events

//These events should be arranged in order of priority, since

//if two events are encountered at once, only process the first one so the second is processed
the next time around

//check timers

if (CheckTimerExpired(TIMER_STATE)) {
CurrentEvent = EV_STATE_TIMEUP;

}

else if(CheckGameTimerExpired()){
CurrentEvent = EV_ESTOP;

}
else if(estopState != CheckEstop()){
if (estopState == 0){
estopState = 1; //toggle the state variable
CurrentEvent = EV_ESTOP;
} else
estopState = 0;
}
else if(nextState != CheckNext())({
if (nextState == 0){
nextState = 1; //toggle the state variable
CurrentEvent = EV_NEXT;
} else
nextState = 0;
}

else if(bumpState != CheckBump()){
if (bumpState == 0){
bumpState = 1;//toggle the state variable
CurrentEvent = EV_BUMP;

} else
bumpState = 0;
}
else if(tapeState != CheckTape()){
tapeState = newTapeState;
//if (tapeState != 0) //ignore "no-tape" events

CurrentEvent = tapeState;//tapeState holds all the bit values, we return the event
as #defined
}
else if(flashState != CheckFlash()){
if (flashState == 0){
flashState = 1;//toggle the state variable
CurrentEvent = EV_FLASH;
} else
flashState = 0;

if (lcdState != CheckLCDButton()){
if (lcdState == 0){
lcdState = 1;//toggle the state variable
PrintDebugToLCD();
ToggleLCDScreen();
} else
lcdState = 0;
}

#ifdef SIMULATE EVENTS //this allows us to simulate our state machine using keyboard presses
if (kbhit() != 0){ //there was a key pressed

KeyStroke = getchar();

switch (toupper (KeyStroke)){

case 'E CurrentEvent = EV_ESTOP; break;
case 'F' CurrentEvent = EV_FLASH; break;
case 'T' CurrentEvent = EV_BEACON_BLIP; break;
case 'R’ CurrentEvent = EV_BEACON; break;
case 'B' CurrentEvent = EV_BUMP; break;
case 'N' CurrentEvent = EV_NEXT; break;
case 'W' CurrentEvent = EV_RLC; break;
case 'S’ CurrentEvent = EV_RL; break;
case 'D' CurrentEvent = EV_RC; break;
case 'A' CurrentEvent = EV_LC; break;
case 'C' CurrentEvent = EV_R; break;
case 'Z' CurrentEvent = EV_L; break;
case 'X' CurrentEvent = EV_C; break;
}
}
#endif

//update displays
SendToDebugRug(CurrentEvent, DEBUG_EVENT);

//print debug rug every time there is an event
//ALSO, skip any tape events, so the term isn't swamped
if ((CurrentEvent != EV_NO_EVENT) && (CurrentEvent > 7)) {

PrintDebugToTerm() ;
}

return(CurrentEvent);

static char CheckTape(void) {
newTapeState = 0;

if (CheckRTape()) newTapeState |= BITOHI;
if (CheckLTape()) newTapeState |= BIT1HI;
if (CheckCTape()) newTapeState |= BIT2HI;

//we use bit operators so as not to disturb the tapeState variable if there are no changes

//CTAPE LTAPE RTAPE

/70 0 0 NO_EVENT 0x00
/70 0 1 EV_R 0x01
//0 1 0 EV_L 0x02
/70 1 1 EV_RL 0x03
//1 0 0 EV_C 0x04
//1 0 1 EV_RC 0x05
//1 1 0 EV_LC 0x06
/71 1 1 EV_RLC 0x07

return newTapeState;

}

//check for a bumper press. Returns true if depressed
char CheckBump(void)
{
if(PTP & BIT3HI) return TRUE;
else return FALSE;
}

static char CheckRTape(void)
{

short Tape Level;

//Part 1 of 2 replicas of "silly mirror code"
if (MirrorFlag == FALSE)

Tape_Level = ADS12_ReadADPin(RIGHT_TAPE);
else

Tape_Level = ADS12_ReadADPin(LEFT_TAPE);

//printf ("RTapeADLevel = %d \r\n", Tape Level);

else return FALSE;
}

static char CheckLTape(void)
{

short Tape Level;

//Here's some silly mirror code
if (MirrorFlag == FALSE)

Tape_Level = ADS12_ReadADPin(LEFT_TAPE);
else

Tape_Level = ADS12_ReadADPin(RIGHT_TAPE);

//printf ("LTapeADLevel = %d \r\n", Tape Level);

if ((Tape_Level>TAPE_THRESH LOW) && (Tape Level<TAPE_THRESH_ HIGH)) return TRUE;
else return FALSE;

}
static char CheckCTape(void)
{
short Tape Level;
Tape_Level = ADS12_ReadADPin(CENTER_TAPE) ;
//printf ("CTapeADLevel = %d \r\n", Tape Level);
if ((Tape_Level>TAPE_THRESH LOW) && (Tape Level<TAPE_THRESH_ HIGH)) return TRUE;
else return FALSE;
}

char CheckMirrorSwitch(void){
if(PTP & BIT4HI) return TRUE;
else return FALSE;

}

static char CheckEstop(void)

{
if(PTS & BIT3HI) return TRUE;
else return FALSE;

}

static char CheckNext(void)

{
if(PTS & BIT2HI) return TRUE;
else return FALSE;

}

static char CheckFlash(void)

{
if (ADS12_ReadADPin(7) > (flashInitialAD + FLASH_TOLERANCE)) return TRUE;
else return FALSE;

}

static char CheckLCDButton(void) {
if(PTP & BITS5HI) return TRUE;
else return FALSE;

}

//check all the sensors to see if they're connected
#ifdef SENSORS TEST
void main(void){
InitAll();
while (TRUE) {
printf ("RTape 2d\r\n", CheckRTape());
printf("LTape = %d\r\n", CheckLTape());
printf("CTape = %d\r\n", CheckCTape());
printf("MirrorSwitch = %d\r\n", CheckMirrorSwitch());
printf("Estop = %d\r\n", CheckEstop());
printf("Next = %d\r\n", CheckNext());
printf("Flash = %d\r\n", CheckFlash());
printf("Bump = %d\r\n", CheckBump());
printf("LCDButton = %d\r\n", CheckLCDButton());
printf("\r\n");
Wait(250);

}
#endif

#ifdef LINE_FOLLOW_TEST
void main(void){

StartTapeSM(RIGHT) ;
while (TRUE) {
RunTapeSM(CheckEvents());

if (QueryTapeSM() == EV_ATT){
Stop();
printf("Tape sensing done\r\n");
}
}
}
#endif

#ifdef CALIBRATION_MOVE_TEST
void main(void){
InitAll();
printf("Starting a calibrated move test\r\n");
while (TRUE) { //repeat
Move (FORWARD, DUTY_ DEFAULT_ MOVE) ;
Wait(DistanceToTime (24, DUTY DEFAULT MOVE)); //go two feet
Stop();
Wait(2000);
Turn(RIGHT, DUTY DEFAULT TURN); //turn around
Wait(AngleToTime (180, DUTY DEFAULT TURN));
Stop();
Wait(2000);

}
#endif

SMGame.h

#ifndef SMGAME
#define SMGAME

#include "headers.h"

// Public Function Prototypes
int RunGameSM(int CurrentEvent);
void StartGameSM (void);

int QueryGameSM (void);

//Private function prototypes

static int During START(int Event);

static int During BEACON(int Event);

static int During BEACON_1(int Event);

static int During BEACON_2(int Event);

static int During BEACON_3(int Event);

static int During CLEAR_SQUARE(int Event);

static int During MIRROR_CHECK(int Event);

static int During MEET DISPENSER(int Event);
static int During MEET DISPENSER_1(int Event);
static int During MEET DISPENSER_2(int Event);
static int During COLLECT BALLS(int Event);
static int During_ COLLECT BALLS_1(int Event);
static int During_ COLLECT BALLS_2(int Event);
static int During GOTO_GOAL(int Event);

static int During_GOTO_GOAL 1(int Event);

static int During GOAL_ BOOST(int Event);

static int During_GOTO_GOAL 2(int Event);

static int During_GOTO_GOAL 4(int Event);

static int During_GOTO_GOAL 5(int Event);

static int During_GOTO_GOAL 6(int Event);

static int During DUMP(int Event);

static int During REVISIT DISPENSER(int Event);
static int During_ REVISIT DISPENSER 1(int Event);
static int During_ REVISIT DISPENSER 2(int Event);
static int During RETURN_BOOST(int Event);

static int During_ REVISIT DISPENSER 3(int Event);
static int During END(int Event);

#endif

SMGame.c

#include "headers.h"

//set MirrorFlag to TRUE if we're mirroring (playing on side B)
extern char MirrorFlag;

/e e Module Variables —————————mmm */

// everybody needs a state variable, you may need others as well

static int CurrentState;

static char BallsCarried; //holds the number of balls in the robot at the moment
static char BallsDelivered; //total balls delivered to the goal (or not)

A Module Code —=—————— */
// make recursive call warning into info

#pragma MESSAGE INFORMATION C1855

int RunGameSM(int CurrentEvent)

{

unsigned char MakeTransition = FALSE;/* are we making a state transition? */
int NextState = CurrentState;

//send the current state to the debugger
SendToDebugRug(CurrentState, DEBUG_GAME_ STATE);

switch (CurrentState)

{

case ST_START : // waiting for electronic flash
// Execute During function for state one. EV_ENTRY & EV_EXIT are
// processed here
CurrentEvent = During START(CurrentEvent);
//process any events
if (CurrentEvent != EV_NO_EVENT)

switch (CurrentEvent)

NextState = ST_BEACON;
MakeTransition = TRUE;
break;
case EV_NEXT : //If we're skipping to the next stage
Stop(); //YES. WE KNOW THIS IS POOR FOR. OH WELL.
Wait(1000);
NextState = ST_BEACON;
MakeTransition = TRUE;
break;
case EV_ESTOP : //If we're emergency stopping
NextState = ST_END;
MakeTransition = TRUE;
break;
}
}

break;

case ST BEACON : //scan left until you see a blip
CurrentEvent = During BEACON(CurrentEvent);
if (CurrentEvent != EV_NO_EVENT)

{
switch (CurrentEvent)
{
case EV_BEACON_BLIP : //If we found a potential beacon
NextState = ST BEACON_1;
MakeTransition = TRUE;
break;
case EV_NEXT : //If we're skipping to the next stage
Stop();
Wait(1000);
NextState = ST BEACON_1;
MakeTransition = TRUE;
break;
case EV_ESTOP : //If we're emergency stopping
NextState = ST_END;
MakeTransition = TRUE;
break;
}
}
break;
case ST BEACON_1 : //turning back to correct for overshoot

CurrentEvent = During BEACON_1(CurrentEvent);
if (CurrentEvent != EV_NO_EVENT)

{
switch (CurrentEvent)
{
case EV_STATE TIMEUP : //If we're done overshooting, says the timer

NextState = ST BEACON_2;
MakeTransition = TRUE;

break;

case EV_NEXT : //If we're skipping to the next stage

Stop();
Wait(1000);
NextState = ST BEACON_2;
MakeTransition = TRUE;

break;

case EV_ESTOP : //If we're emergency stopping

NextState = ST_END;
MakeTransition = TRUE;

break;

}
}
break;
case ST _BEACON_2 : //verify beacon

CurrentEvent = During BEACON_2(CurrentEvent);
if (CurrentEvent != EV_NO_EVENT)
{
switch (CurrentEvent)
{
case EV_FAKE_BEACON : //If it's not the beacon we want
NextState = ST_BEACON_3;
MakeTransition = TRUE;
break;
case EV_BEACON : //we found it!
NextState = ST_CLEAR SQUARE;
MakeTransition = TRUE;
break;
case EV_NEXT : //If we're skipping to the next stage
Stop();
Wait(1000);
NextState = ST_CLEAR SQUARE;
MakeTransition = TRUE;

NextState = ST_END;
MakeTransition = TRUE;

break;
}
}
break;
case ST BEACON_3 : //pass the fake beacon

CurrentEvent = During BEACON_3(CurrentEvent);
if (CurrentEvent != EV_NO_EVENT)

{
switch (CurrentEvent)
{
case EV_STATE_TIMEUP :
NextState = ST_BEACON;
MakeTransition = TRUE;
break;
case EV_NEXT : //If we're skipping to the next stage
Stop();
Wait(1000);
NextState = ST_BEACON;
MakeTransition = TRUE;
break;
case EV_ESTOP : //If we're emergency stopping
NextState = ST_END;
MakeTransition = TRUE;
break;
}
}
break;

case ST _CLEAR_SQUARE : //get off the green square
CurrentEvent = During CLEAR_SQUARE(CurrentEvent);
if (CurrentEvent != EV_NO_EVENT)

switch (CurrentEvent)

{
case EV_STATE TIMEUP :
NextState = ST MIRROR CHECK;
MakeTransition = TRUE;
break;
case EV_NEXT : //If we're skipping to the next stage
Stop();
Wait(1000);
NextState = ST MIRROR CHECK;
MakeTransition = TRUE;
break;
case EV_ESTOP : //If we're emergency stopping
NextState = ST_END;
MakeTransition = TRUE;
break;
}
}
break;
case ST _MIRROR_CHECK : //hit L or R so we know what side we're

CurrentEvent = During MIRROR_CHECK(CurrentEvent);
if (CurrentEvent != EV_NO_EVENT)
{

switch (CurrentEvent)

{

case EV_L :
//if we're on side B, this code gets executed
MirrorFlag = TRUE;

printf (" ON SIDE B\r\n");
NextState = ST MEET DISPENSER;
MakeTransition = TRUE;
break;
case EV_R :
//if we're on side A, this code gets executed
MirrorFlag = FALSE;
printf (" ON SIDE A\r\n");
NextState = ST MEET DISPENSER;
MakeTransition = TRUE;
break;
case EV_NEXT : //If we're skipping to the next stage
Stop();
Wait(1000);
NextState = ST MEET DISPENSER;
MakeTransition = TRUE;
break;

on

MakeTransition = TRUE;

break;
}
}
break;
case ST MEET DISPENSER : //going forward until the first black line is passed

CurrentEvent = During MEET DISPENSER(CurrentEvent);
if (CurrentEvent != EV_NO_EVENT)
{

switch (CurrentEvent)

{
case EV_C :
NextState = ST MEET DISPENSER_1;
MakeTransition = TRUE;
break;
case EV_IC :
NextState = ST MEET DISPENSER_1;
MakeTransition = TRUE;
break;
case EV_RC :
NextState = ST MEET DISPENSER_1;
MakeTransition = TRUE;
break;
case EV_NEXT : //If we're skipping to the next stage
Stop();
Wait(1000);
NextState = ST _MEET DISPENSER_1;
MakeTransition = TRUE;
break;
case EV_ESTOP : //If we're emergency stopping
NextState = ST_END;
MakeTransition = TRUE;
break;
}
}
break;

case ST_MEET_DISPENSER_1 : //correction factor depending on side A or B
CurrentEvent = During_ MEET DISPENSER_1(CurrentEvent);
if (CurrentEvent != EV_NO_EVENT)

switch (CurrentEvent)

{
case EV_STATE_TIMEUP :
NextState = ST MEET DISPENSER_2;
MakeTransition = TRUE;
break;
case EV_NEXT : //If we're skipping to the next stage
Stop();
Wait(1000);
NextState = ST_MEET DISPENSER_2;
MakeTransition = TRUE;
break;
case EV_ESTOP : //If we're emergency stopping
NextState = ST_END;
MakeTransition = TRUE;
break;
}
}
break;
case ST MEET DISPENSER_2 : //approaching tape from the right until T is hit (nested

tape SM)
CurrentEvent = During_ MEET DISPENSER_2(CurrentEvent);
if (CurrentEvent != EV_NO_EVENT)
{

switch (CurrentEvent)
{
case EV_ATT : //if we're at the T
NextState = ST COLLECT_BALLS;
MakeTransition = TRUE;

break;
case EV_NEXT : //If we're skipping to the next stage
Stop();
Wait(1000);
NextState = ST COLLECT BALLS;
MakeTransition = TRUE;
break;

case EV_ESTOP : //If we're emergency stopping
NextState = ST_END;
MakeTransition = TRUE;
break;

break;

case ST COLLECT_BALLS : //moving forward until you hit the front bumper OR

already hit, create a bump event

CurrentEvent = During COLLECT BALLS(CurrentEvent);
if (CurrentEvent != EV_NO_EVENT)

{
switch (CurrentEvent)
{
case EV_BUMP
NextState = ST COLLECT BALLS_1;
MakeTransition = TRUE;
break;
case EV_NEXT : //If we're skipping to the next stage
Stop();
Wait(1000);
NextState = ST_COLLECT BALLS 1;
MakeTransition = TRUE;
break;
case EV_ESTOP : //If we're emergency stopping
NextState = ST_END;
MakeTransition = TRUE;
break;
}
}
break;

case ST_COLLECT BALLS_1 : //sitting still until a ball is collected
CurrentEvent = During_COLLECT BALLS_1(CurrentEvent);
if (CurrentEvent != EV_NO_EVENT)

{
switch (CurrentEvent)
{
case EV_STATE_TIMEUP
NextState = ST COLLECT BALLS_2;
MakeTransition = TRUE;
break;
case EV_NEXT : //If we're skipping to the next stage
Stop();
Wait(1000);
NextState = ST_COLLECT BALLS 2;
MakeTransition = TRUE;
break;
case EV_ESTOP : //If we're emergency stopping
NextState = ST_END;
MakeTransition = TRUE;
break;
}
}
break;

case ST_COLLECT BALLS_2 : //moving backwards
CurrentEvent = During_COLLECT BALLS_2(CurrentEvent);
if (CurrentEvent != EV_NO_EVENT)

switch (CurrentEvent)

{
case EV_STATE_ TIMEUP
if (BallsCarried < 5)
NextState = ST COLLECT_BALLS;
else
NextState = ST_GOTO_GOAL;
MakeTransition = TRUE;
break;
case EV_NEXT : //If we're skipping to the next stage
Stop();
Wait(1000);
NextState = ST_GOTO_GOAL;
MakeTransition = TRUE;
break;
case EV_ESTOP : //If we're emergency stopping
NextState = ST_END;
MakeTransition = TRUE;
break;
}
}
break;
case ST GOTO_GOAL : //turning 90 degrees left (or right)

CurrentEvent = During GOTO_GOAL(CurrentEvent);
if (CurrentEvent != EV_NO_EVENT)

switch (CurrentEvent)

{

if bumper

is

MakeTransition = TRUE;

break;
case EV_NEXT : //If we're skipping to the next stage
Stop();
Wait(1000);
NextState = ST GOTO_GOAL_1;
MakeTransition = TRUE;
break;

case EV_ESTOP : //If we're emergency stopping
NextState = ST_END;
MakeTransition = TRUE;
break;
}
}

break;
case ST GOTO_GOAL_ 1: //GO FORWARD A LITTLE BIT UNTIL WE'RE OFF THE TAPE, THEN ENABLE TAPE

SENSING
CurrentEvent = During_GOTO_GOAL_1(CurrentEvent);
if (CurrentEvent != EV_NO_EVENT)
{

switch (CurrentEvent)
{
case EV_STATE_TIMEUP
NextState = ST_GOAL_BOOST;
MakeTransition = TRUE;

break;
case EV_NEXT : //If we're skipping to the next stage
Stop();
Wait(1000);
NextState = ST_GOAL_BOOST;
MakeTransition = TRUE;
break;

case EV_ESTOP : //If we're emergency stopping
NextState = ST_END;
MakeTransition = TRUE;
break;

}
}

break;
case ST_GOAL_BOOST: //let's go to the goal. FAST!
CurrentEvent = During GOAL_BOOST(CurrentEvent);

if (CurrentEvent != EV_NO_EVENT)
{
switch (CurrentEvent)
{
case EV_STATE_TIMEUP
NextState = ST GOTO_GOAL_2;
MakeTransition = TRUE;
break;
case EV_NEXT : //If we're skipping to the next stage
Stop();
Wait(1000);
NextState = ST GOTO_GOAL_2;
MakeTransition = TRUE;
break;
case EV_ESTOP : //If we're emergency stopping
NextState = ST_END;
MakeTransition = TRUE;
break;
}
}
break;

case ST _GOTO_GOAL_2: //GOING FWD UNTIL TAPE IS HIT (approach from left)
CurrentEvent = During_GOTO_GOAL_2(CurrentEvent);

if (CurrentEvent != EV_NO_EVENT)

{

switch (CurrentEvent)
{
case EV_ATT :
NextState = ST GOTO_GOAL_4;
MakeTransition = TRUE;

break;
case EV_NEXT : //If we're skipping to the next stage
Stop();
Wait(1000);
NextState = ST GOTO_GOAL_4;
MakeTransition = TRUE;
break;

case EV_ESTOP : //If we're emergency stopping
NextState = ST_END;
MakeTransition = TRUE;

}

break;
case ST_GOTO_GOAL_4 : //backing up a bit
CurrentEvent = During_GOTO_GOAL_4(CurrentEvent);
if (CurrentEvent != EV_NO_EVENT)

switch (CurrentEvent)

{
case EV_STATE_TIMEUP
NextState = ST GOTO_GOAL_5;
MakeTransition = TRUE;
break;
case EV_NEXT : //If we're skipping to the next stage
Stop();
Wait(1000);
NextState = ST _GOTO_GOAL 5;
MakeTransition = TRUE;
break;
case EV_ESTOP : //If we're emergency stopping
NextState = ST_END;
MakeTransition = TRUE;
break;
}
}
break;

case ST GOTO_GOAL_5 : //turning R (or L) 90 degrees
CurrentEvent = During_GOTO_GOAL_5(CurrentEvent);
if (CurrentEvent != EV_NO_EVENT)

switch (CurrentEvent)

{
case EV_STATE_TIMEUP
NextState = ST_GOTO_GOAL_6;
MakeTransition = TRUE;
break;
case EV_NEXT : //If we're skipping to the next stage
Stop();
Wait(1000);
NextState = ST_GOTO_GOAL_6;
MakeTransition = TRUE;
break;
case EV_ESTOP : //If we're emergency stopping
NextState = ST_END;
MakeTransition = TRUE;
break;
}
}
break;

case ST GOTO_GOAL_6 : //going forward until bumper is pressed
CurrentEvent = During_GOTO_GOAL_6 (CurrentEvent);
if (CurrentEvent != EV_NO_EVENT)

switch (CurrentEvent)

{
case EV_BUMP
NextState = ST_DUMP;
MakeTransition = TRUE;
break;
case EV_NEXT : //If we're skipping to the next stage
Stop();
Wait(1000);
NextState = ST_DUMP;
MakeTransition = TRUE;
break;
case EV_ESTOP : //If we're emergency stopping
NextState = ST_END;
MakeTransition = TRUE;
break;
}
}
break;

case ST DUMP : //dump till you're pooped
CurrentEvent = During DUMP(CurrentEvent);
if (CurrentEvent != EV_NO_EVENT)
{

switch (CurrentEvent)
{
case EV_STATE_TIMEUP
NextState = ST REVISIT DISPENSER;
MakeTransition = TRUE;

Stop();
Wait(1000);
NextState = ST REVISIT DISPENSER;
MakeTransition = TRUE;
break;

case EV_ESTOP : //If we're emergency stopping
NextState = ST_END;
MakeTransition = TRUE;

break;
}
}
break;
case ST REVISIT DISPENSER : //backing up a bit

CurrentEvent = During REVISIT DISPENSER(CurrentEvent);
if (CurrentEvent != EV_NO_EVENT)

{

switch (CurrentEvent)

{
case EV_STATE_TIMEUP :
NextState = ST REVISIT DISPENSER 1;
MakeTransition = TRUE;
break;
case EV_NEXT : //If we're skipping to the next stage
Stop();
Wait(1000);
NextState = ST REVISIT DISPENSER 1;
MakeTransition = TRUE;
break;
case EV_ESTOP : //If we're emergency stopping
NextState = ST_END;
MakeTransition = TRUE;
break;
}

}

break;
case ST_REVISIT DISPENSER_1 : //turning around 135 degrees
CurrentEvent = During_ REVISIT DISPENSER 1(CurrentEvent);

if (CurrentEvent != EV_NO_EVENT)
{

switch (CurrentEvent)

{
case EV_STATE TIMEUP :
NextState = ST REVISIT DISPENSER 2;
MakeTransition = TRUE;
break;
case EV_NEXT : //If we're skipping to the next stage
Stop();
Wait(1000);
NextState = ST REVISIT DISPENSER 2;
MakeTransition = TRUE;
break;
case EV_ESTOP : //If we're emergency stopping
NextState = ST_END;
MakeTransition = TRUE;
break;
}
}
break;

case ST_REVISIT DISPENSER_2 : //goin' forward till we pass the green
CurrentEvent = During_ REVISIT DISPENSER 2 (CurrentEvent);
if (CurrentEvent != EV_NO_EVENT)

{

switch (CurrentEvent)

{
case EV_STATE_TIMEUP :
NextState = ST_RETURN_BOOST;
MakeTransition = TRUE;
break;
case EV_NEXT : //If we're skipping to the next stage
Stop();
Wait(1000);
NextState = ST_RETURN_BOOST;
MakeTransition = TRUE;
break;
case EV_ESTOP : //If we're emergency stopping
NextState = ST_END;
MakeTransition = TRUE;
break;
}

}

break;

line

if (CurrentEvent != EV_NO_EVENT)

{
switch (CurrentEvent)
{
case EV_STATE_TIMEUP :
NextState = ST REVISIT DISPENSER 3;
MakeTransition = TRUE;
break;
case EV_NEXT : //If we're skipping to the next stage
Stop();
Wait(1000);
NextState = ST_REVISIT DISPENSER_3;
MakeTransition = TRUE;
break;
case EV_ESTOP : //If we're emergency stopping
NextState = ST_END;
MakeTransition = TRUE;
break;
}
}
break;

case ST REVISIT DISPENSER_3 : //approaching tape from the left (or right) side until T is hit
CurrentEvent = During_ REVISIT DISPENSER 3(CurrentEvent);
if (CurrentEvent != EV_NO_EVENT)

{
switch (CurrentEvent)
{
case EV_ATT :
NextState = ST COLLECT_BALLS;
MakeTransition = TRUE;
break;
case EV_NEXT : //If we're skipping to the next stage
Stop();
Wait(1000);
NextState = ST COLLECT BALLS;
MakeTransition = TRUE;
break;
case EV_ESTOP : //If we're emergency stopping
NextState = ST_END;
MakeTransition = TRUE;
break;
}
}
break;
case ST_END : //timer's up! we're done

//do some sort of LED light show
switch (CurrentEvent)

{
case EV_NEXT : //If we're skipping to the next stage

NextState = ST_START;
MakeTransition = TRUE;
break;

}

break;

}

// Check for error events, and printout
if (CurrentEvent == EV_ERROR)
printf("EV_ERROR FOUND!\r\n");

// If we are making a state transition

if (MakeTransition == TRUE)

{
// Execute exit function for current state
RunGameSM(EV_EXIT);
CurrentState = NextState; //Modify state variable
// Execute entry function for new state
RunGameSM(EV_ENTRY) ;

}

return(CurrentEvent);

}

/**

Function
StartGameSM
**/
void StartGameSM (void)
{
CurrentState = ST_START;
// call the entry function (if any) for the ENTRY STATE

int QueryGameSM (void)
{
return(CurrentState);

}

/***

private functions
***/

//WAITING FOR ELECTRONIC FLASH
static int During START(int Event){
// process EV_ENTRY & EV_EXIT events
//these events must all occur when the game starts over
if (Event == EV_ENTRY)
{
//Initialize our mirror flag to false
MirrorFlag = FALSE;

//clean up all variables for next run!
BallsCarried = 0;
BallsDelivered = 0;

telse if (Event == EV_EXIT)
{
//Initialize game timer as soon as the flash is recognized
InitializeGameTimer();
}else
// do the 'during' function for this state
{
}
return Event;

}

//scan L toward the beacon, stop when we see a beacon blip on our radar
static int During BEACON(int Event){

//temp variable to store beacon blip
int blipDuty;

// process EV_ENTRY & EV_EXIT events

if (Event == EV_ENTRY)
{

Turn(LEFT, DUTY_BEACON_SEEK) ;
telse if (Event == EV_EXIT)({

Stop();
}else
// do the 'during' function for this state
{

blipDuty = CheckForBeacon();

//check for a beacon blip event, which only matters to us at this stage
if((blipDuty != 0) && (GetGameTime() > 5)){ //if we see any sort of signal
//printf (" BEACON BLIP DUTY = %d\r\n", blipDuty);
return EV_BEACON_BLIP;
}
}
return Event;

}

//turn back LEFT a small ammount to boost the robot into the center of the beacon
static int During BEACON_1(int Event){

// process EV_ENTRY & EV_EXIT events

if (Event == EV_ENTRY)

{

SetTimer (TIMER_STATE, AngleToTime(ANGLE_BEACON_OVERSHOOT, DUTY_ DEFAULT TURN));
Turn(LEFT, DUTY_BEACON_SEEK); //notice this is in the same direction of travel

telse if (Event == EV_EXIT)({
Stop();
}else
// do the 'during' function for this state
{
}

return Event;

//verify that this is the beacon we're looking for

static int During BEACON_2(int Event){
//create a variable to count how many verification cycles we have performed
static int beaconVerifyCounter = 0;

// process EV_ENTRY & EV_EXIT events

if (Event == EV_ENTRY)

{

telse if (Event == EV_EXIT)({
}else

// do the 'during' function for this state

}

//otherwise, keep checking (repeat state)
if (CheckForSpecificBeacon(BEACON_TO_FIND)) {
beaconvVerifyCounter++;
printf (" THIS IS BEACON BLIP NUMBER %d\r\n", beaconVerifyCounter);
} else{
//this is not a verified beacon. Count up one more error
beaconVerifyErrors++;
printf (" THIS IS FAKE BEACON ERROR NUMBER %d\r\n", beaconVerifyErrors);
}

//if we're done verifying, we've found our beacon!
if (beaconVerifyCounter >= BEACON_VERIFY_ CYCLES){

printf (" THIS IS A VERIFIED BEACON\r\n");
beaconVerifyCounter = 0; //reset for next time
beaconVerifyErrors = 0; //reset for next time
return EV_BEACON;

}

if (beaconVerifyErrors >= BEACON_VERIFY_ ERRORS_ALLOWED) {
printf (" THIS IS A FAKE BEACON\r\n");
beaconvVerifyCounter = 0;
beaconvVerifyErrors = 0;
return EV_FAKE_BEACON;

}

return Event;

}

//move past the false prophet (beacon)

static int During BEACON_3(int Event){
// process EV_ENTRY & EV_EXIT events
if (Event == EV_ENTRY){

SetTimer (TIMER_STATE, AngleToTime(ANGLE_PASS FAKE BEACON, DUTY_ DEFAULT_ TURN));
Turn(LEFT, DUTY DEFAULT TURN);

telse if (Event == EV_EXIT)({
Stop();
}else
// do the 'during' function for this state
{
}

return Event;

}

//GO FORWARD A LITTLE BIT TO GET OFF THE SQUARE
static int During CLEAR_SQUARE(int Event){

// process EV_ENTRY & EV_EXIT events

if (Event == EV_ENTRY)

{

//Init + Start state timer

SetTimer (TIMER_STATE, DistanceToTime(DIST_CLEAR SQUARE, DUTY DEFAULT MOVE));

Move (FORWARD, DUTY_ DEFAULT_ MOVE) ;

telse if (Event == EV_EXIT)
{
Stop();
}else
// do the 'during' function for this state
{
}

return Event;

}

//check L and R to see what side we're on
static int During MIRROR_CHECK(int Event){
// process EV_ENTRY & EV_EXIT events

if (Event == EV_ENTRY)
{
Move (FORWARD, DUTY_ DEFAULT_MOVE) ;
telse if (Event == EV_EXIT)
Stop();
}else
// do the 'during' function for this state
{
}

return Event;

//GOING FORWARD UNTIL WE PASS THE BLACK LINE
static int During MEET DISPENSER(int Event){
// process EV_ENTRY & EV_EXIT events

if (Event == EV_ENTRY)
{
Move (FORWARD, DUTY_FIRST APP);
telse if (Event == EV_EXIT)
Stop();
}else
// do the 'during' function for this state
{
}

return Event;

}

//TURN FUDGE FACTOR (DEPENDING ON SIDE A or B)
static int During MEET DISPENSER_1(int Event){
// process EV_ENTRY & EV_EXIT events
if (Event == EV_ENTRY)
{
//Init + Start state timer
if (MirrorFlag == FALSE){ //SIDE A
SetTimer (TIMER STATE, AngleToTime(35, DUTY_ DEFAULT TURN)); //old

30, older = 35,
really old = 43
Turn(LEFT, DUTY_DEFAULT TURN);
} else { //SIDE B
SetTimer (TIMER_STATE, AngleToTime(18, DUTY DEFAULT TURN)); //old
Turn(LEFT, DUTY_ DEFAULT TURN); //actually right

17

}
telse if (Event == EV_EXIT)
{
Stop();
}else
// do the 'during' function for this state
{
}

return Event;

}

//APPROACHING TAPE FROM THE RIGHT UNTIL THE T IS HIT
static int During MEET DISPENSER 2 (int Event){
// process EV_ENTRY & EV_EXIT events
if (Event == EV_ENTRY)
{
StartTapeSM(RIGHT) ;
telse if (Event == EV_EXIT)({
Event = RunTapeSM(Event);
}else{
// do the 'during' function for this state
Event = RunTapeSM(Event);
}
return Event;

}

//MOVING FORWARD TILL WE HIT THE BUMPER
static int During COLLECT BALLS(int Event) {
// process EV_ENTRY & EV_EXIT events
if (Event == EV_ENTRY)
{
//if somehow we're already against the bumper, move on
if (CheckBump() == TRUE)
return EV_BUMP;

Move (FORWARD, DUTY_GENTLEBUMP) ;
telse if (Event == EV_EXIT)({

Stop();
}else{
// do the 'during' function for this state

}

return Event;

}

//SITTING STILL TILL WE GET ONE BALL
static int During COLLECT BALLS_1(int Event){
// process EV_ENTRY & EV_EXIT events
if (Event == EV_ENTRY)
{
//Init + Start state timer

BallsCarried++;
printf(" Balls carried = %d\r\n", BallsCarried);
}else{
// do the 'during' function for this state
}
return Event;
}
//BACK UP

static int During COLLECT BALLS_2(int Event){

// process

EV_ENTRY & EV_EXIT events

if (Event == EV_ENTRY)
{
//Init + Start state timer
SetTimer (TIMER_STATE, DistanceToTime(DIST_BACKUP, DUTY_ GENTLEBUMP));
Move (BACKWARD, DUTY_ GENTLEBUMP) ;
telse if (Event == EV_EXIT){
Stop();
}else{
// do the 'during' function for this state
}

return Event;

}

//TURN 90 DEGREES
static int During

// process EV_ENTRY & EV_EXIT events

LEFT (or right for side B)
_GOTO_GOAL(int Event) {

if (Event == EV_ENTRY)
{
if (MirrorFlag == FALSE){ //SIDE A
SetTimer (TIMER STATE, AngleToTime(87, DUTY DEFAULT TURN)); //old = 90
Turn(LEFT, DUTY DEFAULT TURN);
} else { //SIDE B
SetTimer (TIMER STATE, AngleToTime(75, DUTY DEFAULT TURN)); //old = 75
Turn(LEFT, DUTY_ DEFAULT TURN); //actually right
}
telse if (Event == EV_EXIT)
{
Stop();
}else
// do the 'during' function for this state
{
}

return Event;

}

//GO FORWARD A LITTLE BIT UNTIL WE'RE OFF THE TAPE, THEN ENABLE TAPE SENSING

static int During
// process EV__

GOTO_GOAL_1(int Event){
ENTRY & EV_EXIT events

if (Event == EV_ENTRY)

{
//Init + Start state timer
SetTimer (TIMER_STATE, DistanceToTime(DIST_OFFTAPE_CLEARANCE, DUTY_ DEFAULT MOVE));
Move (FORWARD, DUTY_ DEFAULT_ MOVE) ;

telse if (Event == EV_EXIT)

{
Stop();

}else

// do the 'during' function for this state

{

}

return Event;

//GOAL BOOST!

static int During
// process EV_.

GOAL_BOOST(int Event){
ENTRY & EV_EXIT events

if (Event == EV_ENTRY)
{
//Init + Start state timer
SetTimer (TIMER_STATE, DistanceToTime(DIST_BOOST, DUTY_ BOOST));
Move (FORWARD, DUTY_BOOST);
telse if (Event == EV_EXIT)
{
Stop();
}else
// do the 'during' function for this state
{

}

//GOING FWD UNTIL TAPE IS HIT (approach from left)
static int During GOTO_GOAL_2(int Event){
// process EV_ENTRY & EV_EXIT events

if (Event == EV_ENTRY)
{
StartTapeSM(LEFT) ;
telse if (Event == EV_EXIT)
{
Event = RunTapeSM(Event);
}else
// do the 'during' function for this state
{

Event = RunTapeSM(Event);
}
return Event;

}

//BACKING UP A BIT
static int During GOTO_GOAL_4(int Event){
// process EV_ENTRY & EV_EXIT events
if (Event == EV_ENTRY)
{
//Init + Start state timer
SetTimer (TIMER STATE, DistanceToTime(DIST BACK OFF GREEN T, DUTY DEFAULT MOVE));
Move (BACKWARD, DUTY DEFAULT MOVE);

telse if (Event == EV_EXIT)
{
Stop();
}else
// do the 'during' function for this state
{
}

return Event;

}

//TURNING RIGHT 90 DEGREES
static int During GOTO_GOAL_5(int Event){
// process EV_ENTRY & EV_EXIT events
if (Event == EV_ENTRY)
{
//Init + Start state timer
SetTimer (TIMER STATE, AngleToTime(85, DUTY DEFAULT TURN)); //0ld=90
Turn(RIGHT, DUTY DEFAULT TURN);

telse if (Event == EV_EXIT)
{
Stop();
}else
// do the 'during' function for this state
{
}

return Event;

}

//GOING FORWARD TILL BUMPER IS PRESSED
static int During GOTO_GOAL_6(int Event){
// process EV_ENTRY & EV_EXIT events

if (Event == EV_ENTRY)
{
Move (FORWARD, DUTY_GENTLEBUMP) ;
telse if (Event == EV_EXIT)
{
Stop();
}else
// do the 'during' function for this state
{
}

return Event;

}

//DOIN' THE DUMP THANG
static int During DUMP(int Event) {
// process EV_ENTRY & EV_EXIT events
if (Event == EV_ENTRY)
{
//Init + Start state timer
SetTimer (TIMER_STATE, TIME_DUMP);
//Set servo voltage so that the 'stache lets the balls out
Open_Ball Dispenser();
telse if (Event == EV_EXIT)
{

//update the ball count

BallsCarried -= 5;

BallsDelivered += 5;

printf(" Balls carried = %d\r\n", BallsCarried);
//if (BallsDelivered >= 20)

// return EV_ESTOP;
}else
// do the 'during' function for this state
{
}

return Event;

}

//BACKING UP A BIT (PAST GREEN TAPE!)
static int During REVISIT DISPENSER(int Event){
// process EV_ENTRY & EV_EXIT events
if (Event == EV_ENTRY)
{
//Init + Start state timer

SetTimer (TIMER_STATE, DistanceToTime(DIST_BACKUP, DUTY DEFAULT MOVE));

Move (BACKWARD, DUTY_ DEFAULT MOVE);

telse if (Event == EV_EXIT)
{
Stop();
}else
// do the 'during' function for this state
{
}

return Event;

}

//TURNING AROUND TO GET MORE BALLS

static int During REVISIT DISPENSER_1(int Event){
// process EV_ENTRY & EV_EXIT events
if (Event == EV_ENTRY)

//v1=7.6, v2=7.9
if (MirrorFlag == FALSE){ //SIDE A

SetTimer (TIMER STATE, AngleToTime (130, DUTY DEFAULT_ TURN));

129, oldest = 127
Turn(RIGHT, DUTY_ DEFAULT_ TURN);

} else { //SIDE B
SetTimer (TIMER STATE, AngleToTime(145, DUTY DEFAULT TURN));
127
Turn(RIGHT, DUTY DEFAULT TURN); //actually right
}
telse if (Event == EV_EXIT)
{
Stop();
}else
// do the 'during' function for this state
{
}
return Event;
}

//GOING FORWARD UNTIL THE GREEN LINE IS PASSED
static int During REVISIT DISPENSER_2(int Event){
// process EV_ENTRY & EV_EXIT events
if (Event == EV_ENTRY)
{
//Init + Start state timer

//0ld

//0ld

132,

142,

older

older

SetTimer (TIMER_STATE, DistanceToTime(DIST OFFTAPE_CLEARANCE, DUTY DEFAULT MOVE));

Move (FORWARD, DUTY_ DEFAULT_ MOVE) ;

telse if (Event == EV_EXIT)
{
Stop();
}else
// do the 'during' function for this state
{
}

return Event;

}

//RETURN BOOST!

static int During RETURN_BOOST(int Event){
// process EV_ENTRY & EV_EXIT events
if (Event == EV_ENTRY)
{

Move (FORWARD, DUTY_BOOST);

telse if (Event == EV_EXIT)
{
Stop();
}else
// do the 'during' function for this state
{
}

return Event;

}

//APPROACHING TAPE FROM THE LEFT SIDE UNTIL T IS HIT
static int During REVISIT DISPENSER_3(int Event){
// process EV_ENTRY & EV_EXIT events
if (Event == EV_ENTRY)
{
StartTapeSM(LEFT) ;
telse if (Event == EV_EXIT)
{
Event = RunTapeSM(Event);
}else
// do the 'during' function for this state
{

}

return Event;

Event = RunTapeSM(Event);

}

static int During END(int Event){

// process EV_ENTRY & EV_EXIT events

if (Event == EV_ENTRY)

{
printf("GAME OVER! END END. WE WIN (MAYBE)\r\n");
Wait(1000);

telse if (Event == EV_EXIT)

{

}else

// do the 'during' function for this state

{

}

return Event;

SMTape.h

#ifndef SMTAPE
#define SMTAPE

#include "headers.h"

// Public Function Prototypes
int RunTapeSM(int CurrentEvent);
void StartTapeSM (char appDir);
int QueryTapeSM (void);

//Private function prototypes

static void During APPR(int Event);
static void During APPL(int Event);
static void During PIVOTR(int Event);
static void During PIVOTL(int Event);
static void During BOPR(int Event);
static void During BOPL(int Event);
static void During GO(int Event);

#endif

SMTape.c

#include "headers.h"

//set MirrorFlag to TRUE if we're mirroring (playing on side B)
extern char MirrorFlag;

[e e Module Variables ——————— e */
// everybody needs a state variable, you may need others as well
static int CurrentState;

A Module Code —=——————m */
// make recursive call warning into info
#pragma MESSAGE INFORMATION C1855
int RunTapeSM(int CurrentEvent)
{
unsigned char MakeTransition = FALSE;/* are we making a state transition? */
int NextState = CurrentState;

//send the current state to the debugger
SendToDebugRug(CurrentState, DEBUG_TAPE_STATE);

switch (CurrentState)
{
case ST_APPR : // If current state is state one
// Execute During function for state one. EV_ENTRY & EV_EXIT are
// processed here
During APPR(CurrentEvent);
//process any events
if (CurrentEvent != EV_NO_EVENT) //If an event is active

switch (CurrentEvent)
{

case EV_RLC : //If event is event one

// Execute action function for state one : event one
CurrentEvent = EV_ERROR;
break;
// repeat cases as required for relevant events

case EV_RL :
break;

case EV_RC :
NextState = ST_BOPR;
MakeTransition = TRUE;
break;

case EV_LC :
NextState = ST_BOPL;
MakeTransition = TRUE;
break;

case EV_R :
break;

case EV_L :
break;

case EV_C :
NextState = ST_PIVOTR;
MakeTransition = TRUE;

}
break;
case ST_APPL :
During APPL(CurrentEvent);
if (CurrentEvent != EV_NO_EVENT)
{
switch (CurrentEvent)
{
case EV_RLC :
CurrentEvent =
break;
case EV_RL :
break;
case EV_RC :
NextState = ST_BOPR;
MakeTransition = TRUE;
break;
case EV_LC :
NextState = ST_BOPL;
MakeTransition = TRUE;
break;
case EV_R :
break;
case EV_L :
break;
case EV_C :
NextState = ST_PIVOTL;
MakeTransition = TRUE;
break;
}
}
break;
case ST _PIVOTR :
During PIVOTR(CurrentEvent);
if (CurrentEvent != EV_NO_EVENT)
{
switch (CurrentEvent)
{
case EV_RLC :
CurrentEvent =
break;
case EV_RL :
CurrentEvent =
break;
case EV_RC :
NextState = ST_BOPR;
MakeTransition = TRUE;
break;
case EV_LC :
CurrentEvent =
break;
case EV_R :
NextState = ST_BOPR;
MakeTransition = TRUE;
break;
case EV_L :
CurrentEvent =
break;
case EV_C :
break;
}
}
break;
case ST _PIVOTL :
During PIVOTL(CurrentEvent);
if (CurrentEvent != EV_NO_EVENT)

switch (CurrentEvent)

{
case EV_RLC :
CurrentEvent =
break;
case EV_RL :
CurrentEvent =
break;
case EV_RC :
CurrentEvent =

break;

case EV_LC :
NextState = ST_BOPL;
MakeTransition = TRUE;

EV_ERROR;

EV_ERROR;

EV_ERROR;

EV_ERROR;

EV_ERROR;

EV_ERROR;

EV_ERROR;

EV_ERROR;

CurrentEvent =
break;
case EV_L :
NextState = ST_BOPL;
MakeTransition = TRUE;

break;
case EV_C :
break;
}
}
break;

case ST_BOPR :
During BOPR(CurrentEvent);
if (CurrentEvent != EV_NO_EVENT)

switch (CurrentEvent)
{
case EV_RLC :
CurrentEvent =
break;
case EV_RL :
CurrentEvent =
break;
case EV_RC :
break;
case EV_LC :
CurrentEvent =
break;
case EV_R :
break;
case EV_L :
CurrentEvent =
break;
case EV_NOTAPE :
NextState = ST GO;
MakeTransition = TRUE;
case EV_C :
NextState = ST GO;
MakeTransition = TRUE;
break;
}
}
break;
case ST_BOPL :
During BOPL(CurrentEvent);
if (CurrentEvent != EV_NO_EVENT)
{
switch (CurrentEvent)
{
case EV_RLC :
CurrentEvent =
break;
case EV_RL :
CurrentEvent =
break;
case EV_RC :
CurrentEvent =
break;
case EV_LC :
break;
case EV_R :
CurrentEvent =
break;
case EV_L :
break;
case EV_NOTAPE :
NextState = ST GO;
MakeTransition = TRUE;
case EV_C :
NextState = ST GO;
MakeTransition = TRUE;
break;
}
}
break;
case ST_GO :
During GO(CurrentEvent);
if (CurrentEvent != EV_NO_EVENT)

switch (CurrentEvent)

{

EV_ERROR;

EV_ATT;

EV_ATT;

EV_ERROR;

EV_ERROR;

EV_ATT;

EV_ATT;

EV_ERROR;

EV_ERROR;

break;

case EV_RL :
CurrentEvent = EV_ATT;
break;

case EV_RC :
NextState = ST_BOPR;
MakeTransition = TRUE;
break;

case EV_LC :
NextState = ST_BOPL;
MakeTransition = TRUE;
break;

case EV_R :
NextState = ST_BOPR;
MakeTransition = TRUE;
break;

case EV_L :
NextState = ST_BOPL;
MakeTransition = TRUE;

break;
case EV_C :
break;
}
}
break;
// If we are making a state transition
if (MakeTransition == TRUE)
{
// Execute exit function for current state
RunTapeSM(EV_EXIT);
CurrentState = NextState; //Modify state variable
// Execute entry function for new state
RunTapeSM(EV_ENTRY) ;
}

return(CurrentEvent);

}

//Start the tape state machine by giving it an approach direction
//take care of any mirroring here!
void StartTapeSM (char appDir)

{
printf("Starting tape sensing\r\n");
//Don't take mirroring into account because we SWITCH TAPE SENSORS
if (appDir == RIGHT)
CurrentState = ST_APPR;
else
CurrentState = ST_APPL;
// call the entry function (if any) for the ENTRY STATE
RunTapeSM(EV_ENTRY) ;
}
int QueryTapeSM (void)
{
return(CurrentState);
}

/***

private functions
***/

static void During APPR(int Event)

{
// process EV_ENTRY & EV_EXIT events
if (Event == EV_ENTRY)
// implement any entry actions required for this state machine
Move (FORWARD, DUTY_APP);
telse if (Event == EV_EXIT)
{
Stop();
}else
// no activity for during
}
return;
}

static void During APPL(int Event)

{
Move (FORWARD, DUTY_APP);

telse if (Event == EV_EXIT)
{
Stop();
}else
{
//no activity for during
}
return;
}
static void During PIVOTR(int Event)
{ if (Event == EV_ENTRY)
{ Turn(RIGHT, DUTY_PIVOT);
telse if (Event == EV_EXIT)
{
Stop();
}else
{
//no activity for during
}
return;
}
static void During PIVOTL(int Event)
{ if (Event == EV_ENTRY)
{ Turn(LEFT, DUTY_PIVOT);
telse if (Event == EV_EXIT)
{
Stop();
}else
{
//no activity for during
}
return;
}
static void During BOPR(int Event)
{ if (Event == EV_ENTRY)
{ SetMotor (L_MOTOR, FORWARD, DUTY_BOP_OUTER);
SetMotor (R_MOTOR, FORWARD, DUTY_BOP_INNER);
telse if (Event == EV_EXIT)
{
Stop();
}else
{
//no activity for during
}
return;
}
static void During BOPL(int Event)
{ if (Event == EV_ENTRY)
{ SetMotor (R_MOTOR, FORWARD, DUTY_BOP_OUTER);
SetMotor (L_MOTOR, FORWARD, DUTY_BOP_INNER);
telse if (Event == EV_EXIT)
{
Stop();
}else
{
//no activity for during
}
return;
}
static void During GO(int Event)
{ if (Event == EV_ENTRY){
Move (FORWARD, DUTY_GO);
telse if (Event == EV_EXIT){
Stop();

telse{//no activity for during}

