Final Psuedo-Code
1Main

2IR Sensor Module

4Flash Sensor Module

5Tape Sensor Module

10Switch Module

11Drive Motor Module

12Ball Requester Module

13Drawbridge Motor Module

14Game Timer Module

15Wait Module

Main: This main coordinates the sensor input and actuator outputs to the E128 in order to play SPDL Happy Fun Ball

void main(void)
unsigned char keyPress;
unsigned char state;

unsigned char tapeState;

unsigned char sensorCheck;

unsigned char balls = 0;

unsigned char tripNumber = 0;

Initialize all modules

Initial state is waiting for flash

while(1)

If 2 min up, end of game

stop drive and drawbridge motors
break from loop

If flash has occurred

Handle flash event

If sensing not 0% DC IR

Handle IR sensor event

Update all tape sensor values
 If driving toward black tape

Check which field robot is on

If driving on black tape

 Check if robot at the corner

If middle tape sensor over tape

Handle tape event

Else

Handle off tape event

If requesting balls

For(balls = 1; balls < 5 ; balls++){

Request ball

 tripNumber++;

if(tripNumber<4)

Point robot toward Goal 3
Else

Point robot toward Goal 1

If releasing balls

Lower drawbridge

Point robot toward ball dispenser

If drawbridge is up (switch high)

Stop drawbridge motor

IR Sensor Module: This module works with a phototransistor in a trans-resistive circuit with signal conditioning to detect IR signals emitted at 1.25 kHz using the Port T6 and T7 of E128 board as inputs. Measures the signals duty cycle using input capture interrupts on those ports.

Module Variables
typedef union

struct

unsigned int high;

 unsigned int low;

AsInt;

unsigned long AsLong;

LongByInts;

static unsigned long IRSignalPeriod = 2400; // 0.8 ms

static unsigned int TIM0_OC6_Period = 4800; // 1.6 ms

static unsigned int TIM0_OC7_Period = 24000; // 8 ms

static LongByInts TimeOfRisingEdge;

static LongByInts TimeOfFallingEdge;

static LongByInts CurrentTime;

static unsigned long TimeOfLastFallingEdge;

static unsigned long HighTime;

static unsigned long DutyCycle;

static unsigned long Period;

static unsigned int Overflows;

static unsigned long n; // number of DC terms averaged over

static unsigned long SumDutyCycle; // running sum of n number of DC terms

static unsigned long AvgDutyCycle; // SumDutyCycle/n

Module Functions
void IRSensor_Init(void): Initializes Timer 0 for IR signal detection.

Enable TIM0

Enable TIM0 overflow interrupt & set TIM_0 to 3 MHz tick rate

Clear TIM0 overflow counter

Clear overflow flag

Enable TIM0_TC4 interrupt

Set TIM_0 IC4 to capture rising edges

Clear TIM_0 IC4 flag

TimeOfRisingEdge.AsInt.high = 0;

TimeOfRisingEdge.AsInt.low = current time

Enable TIM0_TC5 interrupt

Set TIM0_TC5 to capture falling edges

Clear TIM0_TC5 flag

TimeOfFallingEdge.AsInt.high = 0;

TimeOfFallingEdge.AsInt.low = current time

TimeOfLastFallingEdge = current time

Enable TIM0_TC6 interrupt

Set TIM0_TC6 to output capture

Set no pin connect for TIM0_OC6

Set first compare for TIM0_OC6

Clear flag for TIM0_OC6

Enable TIM0_TC7 interrupt

Set TIM0_TC7 to output capture

Set no pin connect for TIM0_OC7

Set first compare for TIM0_OC7

Clear flag for TIM0_OC7

SumDutyCycle = 0;

AvgDutyCycle = 0;

n = 0;

void interrupt _Vec_tim0ch4 IRSensor_DetectRisingEdge(void): Checks for rising edges of IR signal on Timer IC4 (Port T0)
Check for pending Timer 0 overflow

clear Timer 0 overflow flag

 Overflows++;

Update time of rising edge

Clear Timer 0 IC4 flag

void interrupt _Vec_tim0ch5 IRSensor_DetectFallingEdge(void): Checks for falling edges of IR signal on Timer IC5 (Port T1) and computes IR signal high time.
Check for pending TIM0 overflow

clear TIM0 overflow flag

 Overflows++;

Update time of falling edge

Calculate high time

Calculate period

Calculate duty cycle

Clear Timer 0 IC5 flag

Add new duty cycle to SumDutyCycle

n++;

void interrupt _Vec_tim0ovf IRSensor_CheckOverflows(void): Checks for timer overflows.

clear Timer 0 overflow flag

Overflows++;

void interrupt _Vec_tim0ch6 IRSensor_CheckZeroDutyCycle(void): Checks if duty cycle is zero.
Check for pending TIM0 overflow

Clear TIM0 overflow flag

 Overflows++;

Update current time

If duty cycle update time > IRSignalPeriod

DutyCycle = 0

Program next compare for TIM0_0C6

Clear TIM0_0C6 flag

void interrupt _Vec_tim0ch7 IRSensor_CalcAvgDutyCycle(void): Every TIM_OC7 period, calculates the average duty cycle of the DC measured over the period

Check for pending TIM0 overflow

Clear TIM0 overflow flag

 Overflows++;

Program next compare for TIM0_0C7

Clear TIM0_0C7 flag

if (n!=0)

AvgDutyCycle = SumDutyCycle/n;

n = 0;

SumDutyCycle = 0;

Else

AvgDutyCycle = 0;

unsigned long IRSensor_GetDutyCycle(void): Returns the duty cycle of the detected IR signal.

return DutyCycle;

unsigned long IRSensor_GetAvgDutyCycle(void): Returns the average duty cycle of the detected IR signal over the specified time in ms.

return AvgDutyCycle;

unsigned char IRSensor_Check(void): Returns 1 if detecting an average duty cycle != 0, else returns 0.

if(AvgDutyCycle != 0)

return 1;

else

return 0;

unsigned char IRSensor_Handle(unsigned char state): If in the SEARCH_FOR_50IR state and seeing close to a 50% DC, stops turning, and returns TO_BLACK_TAPE state. Else returns same state passed in.

If state = SEARCH_FOR_50IR)

If (AvgDutyCycle > 45 and < 55)

Stop robot driving

return TO_BLACK_TAPE;

return state
Flash Sensor Module: This module works with a phototransistor input to Port T2 of the E128 board to detect a flash (a voltage HI).
Module Variabless
unsigned char Flash = 0; // = 0 if no Flash, = 1 if Flash has occurred

Module Functions
void FlashSensor_Init(void): Initializes Port T2 to be an input for flash sensor to check for flash.

Set Port T2 to be input

unsigned char FlashSensor_Check(void): Checks for game start flash. Return 0 if no flash is seen, returns 1 if flash is seen
If Port T2 is lo (flash has not occurred)

return 0;

else

Flash = 1

return 1

unsigned char FlashSensor_Handle(unsigned char state): If FlashSensor event has occurred during WAIT_FOR_FLASH state, starts bot turning and returns state SEARCH_FOR_50IR.
If state = WAIT_FOR_FLASH and Flash = 1

 Turn robot left

return SEARCH_FOR_50IR

else

return state

Tape Sensor Module: Initializes ports for tape sensor inputs. Checks tape sensor values, returning 1 if on tape, and responds to tape events with calling motor functions to drive and position the bot correctly.

E128 connections

Port AD0 - Left tape sensor input

Port AD1 - Middle tape sensor input

Port AD2 - Right tape sensor input

Port AD3 - Front right tape sensor input

Port AD4 - Front left tape sensor input

Port AD5 - Back left right tape sensor input

Port AD6 - Back right tape sensor input
Module Variables
#define ON_TAPE 1

#define WHITE_FLOOR 0
#define BLACK_TAPE 2

#define RED_TAPE 3

#define GREEN_TAPE 4

#define SIDE_A 1

#define SIDE_B 2

#define SIDE_FOUND 1

#define LOOKING_FOR_SIDE 0

#define CORNER_FOUND 1

#define LOOKING_FOR_CORNER 0

// maximum threshold AD values for tapes for the:

// left, middle, right, front right, front left, back left, back right sensors

static unsigned int greenTape[] = {800,750,600,400,600,700,700}; // for green tape

static unsigned int redTape[] = {600,450,350,200,250,450,350}; // for red tape

static unsigned int blackTape[] = {400,350,250,175,200,300,250}; // for black tape

// = #defined values above if on tape, else = 0

static unsigned int tapeSensor[] = {0,0,0,0,0,0,0};

static unsigned int ADvalue;

static unsigned char FieldSide; // = SIDE_A or SIDE_B

static unsigned char checkSide;
 // = SIDE_FOUND or LOOKING_FOR_SIDE

static unsigned char checkCorner; // = CORNER_FOUND or LOOKING_FOR_CORNER

static unsigned char fourthTrip; // = 1 if on fourth trip to a goal, else = 0

Module Functions
void InitTapeSensors(void): Initialize AD ports to be analog.
Set Port AD pins to be analog

checkSide = LOOKING_FOR_SIDE;

checkCorner = LOOKING_FOR_CORNER;

fourthTrip = 0;

unsigned char CheckTape(unsigned char sensorNum): Reads the AD input of the tape sensor corresponding to the sensor ID passed in. Returns whether the tape sensor is ON_TAPE, else returns 0.

Read A/D value that corresponds to sensorNum

if (ADvalue < threshold for green tape for sensorNum

if (ADvalue < threshold for red tape for sensorNum

if(ADvalue < threshold for black tape for sensorNum

tapeSensor[sensorNum] = BLACK_TAPE
return ON_TAPE;

 tapeSensor[sensorNum] = RED_TAPE;

 return ON_TAPE;

 tapeSensor[sensorNum] = GREEN_TAPE;

 return ON_TAPE;

tapeSensor[sensorNum] = WHITE_FLOOR;

return 0;

void UpdateTapeSensors(void): Calls CheckTape for all the tape sensors, so tapeSensor variable has current state of all the sensors.
Check left tape sensor

Check right tape sensor

Check front left tape sensor

Check front right tape sensor

Check back left tape sensor

Check back right tape sensor

unsigned char HandleTape(unsigned char state): Given the state you are in, initiates sequence in response to tape sensor being over tape. Returns the new state value.
If state = driving to black tape and middle sensor is over black tape

Set left and right motor drive duty cycles to slower speed

If FieldSide = SIDE_B

While front left tape sensor is not on tape

Go forward

If drawbridge switch is closed

Stop drawbridge motor

While middle tape sensor is not on tape

Turn robot left

If drawbridge switch is closed

Stop drawbridge motor

Stop robot driving
Else if FieldSide == SIDE_A

While front right tape sensor is not on tape

Go forward

If drawbridge switch is closed

Stop drawbridge motor

While middle tape sensor is not on tape

Turn robot right

If drawbridge switch is closed

Stop drawbridge motor

Stop robot driving
Else

Print "you don't know what side you're on! AAAAHHHH!"
Drive robot forward

Return FOLLOW_BLACK_TAPE;

Else if driving to green tape (from Ball Dispenser) and middle sensor is over green tape

Set left and right motor drive duty cycles to slower speed

Drive forward until back left or right tape sensors are not on tape

Stop robot driving
If FieldSide = SIDE_A

While middle tape sensor is on tape

Turn robot right

Stop

return FOLLOW_GREEN_TAPE

Else if FieldSide = SIDE_B

While middle tape sensor is on tape

Turn robot left

Stop robot driving

return FOLLOW_GREEN_TAPE

Else if driving to black tape from Goal 3 and middle sensor is on black tape

Set left and right motor drive duty cycles to slower speed

Drive robot forward

While back left or right tape sensor is not on tape

Wait

If drawbridge switch is closed

Stop drawbridge motor

 Stop robot driving
 DriveMotor_Drive(STOP);

If FieldSide = SIDE_A

While middle tape sensor is not on tape

Turn robot right

If drawbridge switch is closed

Stop drawbridge motor

Stop

return FOLLOW_BLACK_TAPE

 else if FieldSide = SIDE_B

While middle tape sensor is not on tape

Turn robot left

If drawbridge switch is closed

Stop drawbridge motor

Stop

return FOLLOW_BLACK_TAPE

Else if driving to black tape (from Ball Dispenser) and middle sensor is on black tape

Set left and right motor drive duty cycles to slower speed

Drive Robot forward

 Wait 300 ms

Set left and right motor drive duty cycles to faster speed

If FieldSide = SIDE_A

While middle tape sensor is not on tape

Turn robot right

Stop robot driving

Return FOLLOW_BLACK_TAPE;

If FieldSide = SIDE_B

While middle tape sensor is not on tape

Turn robot left

Stop robot driving

Return FOLLOW_BLACK_TAPE;

Else if driving on black tape (to Ball Dispenser) and middle sensor is on black tape

If front left and right sensor not on white floor

Stop robot driving
Wait 1000ms

If fourthTrip

Do reverse sequence
 Turn robot Right 90Degrees
return RELEASING_BALLS

 else

return REQUESTING_BALLS;
Else

Drive robot forward

return state

Else If driving on green tape (to Goal 3) and middle sensor is on green tape

If front right and left tape sensor = WHITE_FLOOR
If FieldSide=SIDE_A

Stop robot driving

Drive robot backward

Wait 300 ms

Stop robot driving

return RELEASING_BALLS

else

 Turn robot Left 90Degrees

While middle tape sensor is not on tape
Turn robot left

Stop robot driving

Drive robot forward

Wait 300 ms

Stop robot driving

return RELEASING_BALLS;

Else

Drive robot forward

Return state

unsigned char HandleOffTape(unsigned char state):
Given the state you are in, initiates sequence in response to tape sensor not being over tape. Returns the state value.

If driving to black or green tape
Set left and right motor drive duty cycles to slower speed

Drive robot forward

If driving along tape

If right tape sensor is not on white floor

Turn robot right

If left tape sensor is not on white floor

Turn robot left

return state;

void CheckSide(void): When robot crosses black tape (when driving from starting box, use the tape sensor values to determine if bot is on Side A or B and record that.

If checkSide=LOOKING_FOR_SIDE

If right sensor is on black tape

FieldSide = SIDE_B;

If right sensor is on black tape

FieldSide = SIDE_A;

checkSide = SIDE_FOUND;

Stop robot driving

void CheckCorner(void): When robot drives along black tape (when driving from starting box) check to see if at the right angle turn in the tape and if robot is, conducts sequence so turns to keep driving along black tape.
If checkCorner=LOOKING_FOR_CORNER and checkSide=SIDE_FOUND
Update tape sensor values

 If front right sensor over black tape

Drive robot forward

Wait 300 ms

Stop robot driving

While middle tape sensor is not on tape

Turn robot right

Stop robot driving

 checkCorner = CORNER_FOUND

 If front left sensor over black tape

Drive robot forward

Wait 300 ms

Stop robot driving

While middle tape sensor is not on tape

Turn robot left

Stop robot driving

 checkCorner = CORNER_FOUND;

void TurnLeft90Degrees(void): Control drive motors so robot turns left 90 degrees

Turn robot left

Wait 900 ms

Stop robot driving

void TurnRight90Degrees(void): Control drive motors so robot turns right 90 degrees

Turn robot right

Wait 800 ms

Stop robot driving

void TurnLeft45Degrees(void): Control drive motors so robot turns left 45 degrees

Turn robot left

Wait 400 ms

Stop robot driving

void TurnRight45Degrees(void): Control drive motors so robot turns right 45 degrees

Turn robot right

Wait 400 ms

Stop robot driving

void Reverse(void): Control drive motors so robot backs up a set distance

Drive robot backward

Wait 600ms

Stop robot driving

void Forward(void): Control drive motors so robot goes forward a set distance

Drive robot forward

Wait 600ms

Stop robot driving

unsigned char PointToGoal3(void): Executes sequence so robot goes from pointing toward Ball Dispenser to being pointed toward green tape to Goal 3

Reverse sequence

If FieldSide=SIDE_B
Turn robot Left 90Degrees
Else if FieldSide=SIDE_A

Turn robot Right 90Degrees

Else print “error. unknown side!”
Drive robot forward
return TO_GREEN_TAPE;

unsigned char PointToBallDispenser(void): Executes sequence so robot goes from pointing toward Goal 3 to being pointed toward black tape to Ball Dispenser
if fourthTrip = 1

return GAME_DONE

if FieldSide=SIDE_B

Drive robot forward

Wait 1000ms

Stop robot driving

Turn robot Right 90Degrees

if FieldSide=SIDE_B

Drive robot backward

Wait 1000ms

Stop robot driving

Turn robot Right 90Degrees

else print "error. unknown side”
Set left and right motor drive duty cycles to faster speed

Drive robot forward

return BACK_TO_BLACK_TAPE
unsigned char PointToGoal1(void): Executes sequence so robot goes from pointing toward Ball Dispenser to being pointed toward black tape to Goal 1

Revese sequence

If FieldSide=SIDE_A

Turn robot left 135Degrees

If FieldSide=SIDE_B

Turn robot right 135Degrees

Else print “error. unknown side!"
Drive robot forward

fourthTrip = 1;

return TO_BLACK_TAPE_TO_GOAL1
Switch Module: This module works with Port U4 on an E128 board to check if its switch input is high (i.e. drawbrdige closed) or low (drawbrdige open)

Module Variabless
#define CLOSED 1

#define OPEN 0

Module Functions
void Switch_Init(void): Initializes Port U 4-7 to be inputs

Set Port U4-7 to be inputs
unsigned char CheckSwitchHit(unsigned char switchNum): Returns HIT if the switchNum switch is closed and NO_HIT if it's open.

switch(switchNum)

case DRAWBRIDGE_SWITCH:
If Port U4 is hi
return HIT
else
return NO_HIT
default:
 print "error in switch. you should not be in here.”

Drive Motor Module: This module controls the drive motors of the robot using the clock of Port U0 and U1 of the E128 board and PWM outputs to Port T3 & T4.

Module Variabless
static unsigned char LeftDutyCycle

static unsigned char RightDutyCycle

Module Functions
void DriveMotor_Init(void): Initializes the E128 Port U clock to control PWM outputs to Port T3 & T4, the drive motors

Set Clock A to 12 MHz

Set Clock SA to 23.4 kHz

Set PWM Channel 0 & 1 to use Clock SA

Set period to 100 Hz

Set polarity to hi

Set initial duty cycle to 0%

Map to Ports U0 & U1

Enable PWM

Set Ports T3 & T4 to be outputs for direction

void DriveMotor_Drive(unsigned char command): Sets the duty cycle of the PWM signal to the left and right drive DC motors to make the robot go forward, backward, stop, turn left, and turn right.

switch(command)

case FORWARD :

Set Right PWM duty = RightDutyCycle * period / 100

Set Right direction low

Set Left PWM duty = LeftDutyCycle * period / 100
Set Left direction low

 case BACKWARD :
Set Right PWM duty = (100-RightDutyCycle)* period / 100
Set Right direction hi

Set Left PWM duty = (100-LeftDutyCycle)* period / 100
Set Left direction hi

 case LEFT :

Set Right PWM duty = (100-RightDutyCycle)* period / 100
Set Right direction hi

Set Left PWM duty = LeftDutyCycle * period / 100
Set Left direction low

 case RIGHT :

Set Right PWM duty = RightDutyCycle * period / 100
Set Right direction low

Set Left PWM duty = (100-LeftDutyCycle)* period / 100
Set Left direction hi

 case STOP

Set Right PWM duty = 0
Set Right direction low

Set Left PWM duty = 0
Set Left direction low

 default :

print “DriveMotor_Drive error: Invalid drive command. Stopping motors."

Set Right PWM duty = 0
Set Right direction low

Set Left PWM duty = 0
Set Left direction low

unsigned char DriveMotor_GetDuty(unsigned char direction): Returns the on duty cycle value of the left or right drive motor

switch(direction)

case 1:
return LeftDutyCycle
case 2:
return RightDutyCycle

void DriveMotor_SetLeftDuty(unsigned char dutyCycle): Sets the duty cycle value of the left drive motor to the value passed in

LeftDutyCycle = dutyCycle

void DriveMotor_SetRightDuty(unsigned char dutyCycle): Sets the rightduty cycle value of the left drive motor to the value passed in
 RightDutyCycle = dutyCycle

Ball Requester Module: This module controls the drive motors of the robot in order to drive forward into the Ball Dispenser for one second to depress a switch on it.

Module Functions
void BallRequester_GetBall(void): Sequence that controls the drive motors so the bot moves forward to hit the Ball dispenser, stops to keep it depressed and then backs up to prepare to depress again
Drive robot backward

Wait 300ms

Stop

Wait 300 ms

Drive robot forward

Wait 400 ms

Stop robot driving

Wait 1100 ms

Drawbridge Motor Module: This module controls the drawbridge motor of the robot using Port U2 of the E128 board with PWM output to T5
Module Variabless
static unsigned char DutyCycle in %

Module Functions
void DrawbridgeMotor_Init(void): Initializes the E128 Port U clock to control the PWM output to Port T5, the drawbridge motor

Set Clock B to 375 kHz

Set Clock SB to 46875 Hz

Set PWM Channel 2 to use Clock B

Set period to 2000 Hz

Set polarity to HI

Set initial duty cycle to 0%

Map to Ports U2

Enable PWM

Set Port T5 to be output for direction

void DrawbridgeMotor_Drive(unsigned char command): Sets the PWM signal to the DC motor to raise, lower, or pause the motion of the drawbridge

switch(command)

 case PAUSE :

Set duty cycle = 0

Set direction lo

 case RAISE :

Set duty cycle = (DutyCycle * period) / 100

Set direction lo

 case LOWER :

Set duty cycle = ((100-DutyCycle) * period) / 100

Set direction hi

 default :

print "DrawbridgeMotor_Drive error: Invalid drive command. Stopping motors"

Set duty cycle = 0

Set direction lo

void DrawbridgeMotor_Release(void): Sequence that lowers the drawbridge to its lower limit pause with it open for the balls to roll out, and then starts to raise it.

Lower drawbridge

Wait 4300 ms

Pause drawbridge

Wait 500ms

Raise drawbridge

Game Timer Module: This module works with Timer 2 on an E128 board to set a flag after a 2 min time interval, the time limit for the game.
Module Variabless
typedef union

 struct

 unsigned int high;

 unsigned int low;

 AsInt;

 unsigned long AsLong;

LongByInts;

static unsigned int TIM2_OC4_Period = 65535; // 0.35 s

static LongByInts CurrentTime;

static unsigned int Overflows;

static long MaxTime = 22500000; // 120 s

Module Functions
void GameTimer_Init(void): Initializes Timer 2 for game timer.

Enable TIM2

Enable TIM2 overflow interrupt

Set TIM_2 to 187.5 kHz tick rate

Clear TIM2 overflow counter and flag

Overflows = 0;

Set up TIM2_TC4 for output compare

Set TIM2_TC4 to be interrupt

Set TIM2_TC4 to output compare

Set no pin connect for TIM2_OC4

Set first compare for TIM2_OC4

Clear flag for TIM2_OC4

void interrupt _Vec_tim2ch4 GameTimer_UpdateTime(void): When timer expires (every .35 seconds), reset timer and the value of how much time has passed.

If pending TIM2 overflow

Increment overflow counter

Clear TIM2 overflow flag

Update current time variable

Program next compare for TIM2_0C4 (.35 sec)

Clear TIM2_0C4 flag

void interrupt _Vec_tim2ovf GameTimer_CheckOverflows(void): Checks for timer overflows.

Increment overflow counter

Clear Timer 2 overflow flag

unsigned char GameTimer_TimeExpired(void): Check if the current elapsed time is > the max time of the game (2 min) and if so, returns 1, else returns 0.

If(CurrentTime > MaxTime)

return 1;

else

return 0;
Wait Module: This module works with Timer 1 on an E128 board to wait for a specified time interval.

Module Variabless
static unsigned int TIM1_OC4_Period = 6000; // 1 ms

Module Functions
void Wait_Init(void): Initializes Timer 1 for wait function

Enable TIM1

Set TIM1 to 6 MHz tick rate

Set up TIM1_TC4

Set TIM1_TC4 to output compare

Set no pin connect for TIM1_OC4

void Wait(unsigned int time): Waits for the specified period if time in ms.

unsigned int counter = 0

Initialize timer for 1ms

Clear timer 1 flag

while(counter < time)

while(timer 1 flag not expired)

wait for 1 ms to expire

 Set timer for 1ms again

Clear flag

counter++;

if GameTimer has expired

Stop Drawbridge motor

Stop Drive motors

