

Weiner Meister Final Report
ME218c – June 6th, 2008

DESIGN OVERVIEW

Game Strategy:
Our strategy for the game was to have a fast and maneuverable boat with immense long-
range water dispensing capabilities. For water dispensing we chose to use a long
distance squirting apparatus versus a short-range dumping apparatus. This combination
of long range water dispensing with our agile boat allows us to be a strong offensive and
defensive force during game play.

MECHANICAL DESIGN

Boat

Our two-independent-propeller drive train worked in tandem with our “bun-shaped” hull
allowing us to achieve this goal of combined speed and maneuverability. For water
dispensing, the boat featured two bilge pumps which directed the water through two
nozzles mounted to the front of our craft. The boat also featured a sealed midsection to
house all of the electronics.

Hull

The hull is constructed of closed-cell foam which was carved into its delicious bun shape.
The underside of the hull is shaped so that there are two pontoons on either side to help
stabilize the boat. The hull also features cutouts on the underside to house the drive train
components as wells as the bilge pumps for water dispensing.

Drive train

Our drive consists of two independent dc motors each driving their own propellers. The
motors are housed inside sealed PVC pipe and have drive shafts exiting through grease-
sealed bushings. These drive shafts are connected to RC boat propellers. The use of the
two independent motors allows the boat to go backwards, forwards and rotate in place.

Water dispensing

The boat features two 500 gallon per hour bilge pumps that provide some serious water
dispensing capabilities. The pumped water runs up to the top of our boat through vinyl
tubing and is then forced through a brass nozzle. The nozzle was sized such that it gives
us a fairly long range (~12 feet) without compromising our sizable volumetric flow.

Board mounting/Water proofing

All of our circuitry is mounted on a masonite board which easily slips in and out of a
piece of PVC pipe. The masonite board allows the electronics to sit in the middle of the

pipe so that if water were to enter the pipe it would sit in a pool below the electronics.
The PVC pipe has a sealed cap on one end and a removable one on the other. The PVC
pipe features a small slit on the side which allows us to route the wiring into the pipe.
The slit is located such that when the cap is pressed on, the wiring is compressed to
eliminate any air gaps for water to get in.

Helm

The helm is designed to simulate the classic barbeque experience. There is an actual
barbeque incorporated into the helm as a well barbeque utensil and condiments. The user
manipulates the barbeque utensil and condiments to maneuver the boat and to squirt
water. The helm also communicates information to the captain through the use of
dynamic graphical indicators which are controlled by servos. There is also a siren to
indicate when the boat is “stood down”.

Indicators

The helm uses servo controlled indicators to communicate the current active base as well
as the number of the boat the helm is currently controlling. The servos are mounted
underneath the main table surface and have arrows mounted to them. The servos rotate
the arrows to various positions to point at the necessary graphic to convey the appropriate
information.

Board mounting

The boards are mounted to a laser-cut piece of masonite which fits inside of the barbeque.
The masonite board features openings to allow wiring to be easily mounted down and out
of the barbeque.

Sensors/Inputs

The speed and direction of the boat are controlled using a barbeque utensil derived
joystick. A barbeque spatula was cut and then brazed to a threaded piece of brass. This
allows the spatula handle to be threaded onto the joystick. The joystick is a store bought
item which essentially consists of two potentiometers mounted to a threaded piece of rod.
Mounting the spatula handle to the joystick allows the captain to use the spatula handle
to maneuver the boat in an intuitive way (pushing the spatula forward makes the boat go
forward, etc.).

The water dispensing is activated by shaking a container of mustard. The mustard bottle
contains a weighted bare wire inside which makes contact with an aluminum tube when
the mustard container is shaken. When contact is made the microprocessor sends a signal
to the boat telling it to squirt water.

The helm also features two “special” buttons. They are simply two push buttons which
can be used to control “special” features the boats may contain. For example, our boat
had a siren which could be activated using these special buttons.

ELECTRICAL DESIGN

Boat JP5 Board - iButton and XBee
This board has connections for the E128 to communicate with the Xbee board provided to us, and has a
PIC circuit for iButton reading. Note that we had to jumper two connections on the Xbee board to allow the
header input to communicate with the Xbee module without a PIC on the Xbee board.

We opted to use a PIC for reading the iButton since it is easier to control the timing when the device is
dedicated to just this function. The iButton uses a 1-wire communication scheme that requires controlling
and then reading the same line. The E128 indicated to the PIC that it wanted an iButton number by
lowering a single enable line. The PIC indicates to the user that it wants to read an iButton by flashing the
LED in the center of the reader. When it successfully reads the serial number, it then uses SPI to transfer
the required bytes to the E128. Once the E128 has verified that there is a matched serial number, it raises
the enable line to end this stage. This satisfies the project requirement that either the boat or helm must
have two actively communicating processors.

GND 20

PP5 19

PP4 18

PP3 17

PP1 16

PAD4 15

PAD5 14

PAD6 13

PAD7 12

GND 11

GND1

PS22

PS33

PP24

PP05

PAD06

PAD17

PAD28

PAD39

GND10

E
12

8
JP

5

E128_JP5

JP1

XBEE DOUT

XBEE DIN

Ibutton Select

1
2
3
4
5
6

XBee

JP3

+5
XBEE DOUT

XBEE DIN

1
2

5V from E128

JP2+5

1KR3

Vss 20

RA0/AN0 19

RA1/AN1 18

RA2/AN2 17

RC0/AN4 16

RC1/AN5 15

RC2/AN6 14

RB4/SDI 13

RB5/RX 12

RB6/SCK 11

Vdd1

RA5/OSC12

RA4/AN3/OSC23

RA3/MCLR4

RC5/CCP15

RC4/C2OUT6

RC3/AN77

RC6/SS8

RC7/SDO9

RB7/TX10

16
F6

90

PIC16F690

iButton Reader PIC1

+5

X1

+5

1K
R2

1

LED + 4

LED - 3

DATA 2

GND 1

iB
utton

IBUTTON

JP4

1K

R4

iButton LED

+5

5K
R1

PS7/SS 1

PS6/SCK 2

GND 3

PS5/MOSI 4

PS4/MISO 5

E
12

8
JP

2

E128_JP2

JP5Ibutton Select

MISO

MOSI

SCK

SS

MISO

SCK

SS

MOSI

iButton LED

Tx/Rx Tx/Rx

Boat JP5 Board - iButton and Xbee

Boat JP6 Board - Outputs:
This board has connections for the PWM signal to the motor drivers and the digital outputs for water and
special functions. Very simple, indeed.

1
2

Power to E128

JP11+8V
1

PU72

PU63

PT04

PT15

PT26

PT37

PT48

PT59

PT610

PT711

12

24

GND 23

PU5 22

PU4 21

PU3 20

PU2 19

PU1 18

PU0 17

PE7 16

PT7 15

PE1 14

13

E
12

8
- J

P6

E128_JP6

JP10

1
2
3

Rmotor

JP16

1
2
3

Lmotor

JP17

1
2
3
4
5
6

Signals

JP13

GND

RmotorPWM

LmotorPWM

TeamBlueTeamRed

LmotorDir

RmotorDir

Water

Special

LmotorDir

RmotorDir
RmotorPWM

LmotorPWM

GND
Water

TeamBlue
TeamRed

Special

Boat JP6 Board - Outputs

Boat Power Board:
This board has a block of screw terminals for connecting the batteries, power switch, and power to the
motor drivers. It also has a block of power MOSFETs that each control a bilge pump or light, according to
the signals received from the JP6 board.

1
2
3
4
5
6

Signals

JP14

1
2

Bilge1

JP12

1
2

Red Light

JP15

1
2

Blue Light

JP18

1
2

Special

JP19

1
2

Bilge2

JP21

1
2

for switch LED

JP20

1
2

JP6

1
2

JP7

1
2

JP8

1
2

JP9

GND
Water

TeamBlue
TeamRed

Special

+15V

GND
GND

Batt1

Port

To motor driver

Switch+

Batt1 -

Batt2 +

Batt1 +
Switch -

To motor driver

Batt2 -

GND
GND

Boat Power Board

Q1

Q2

Q3

Q4

Q5

Water

TeamBlue

TeamRed

Special

Water

GND

GND

GND

GND

GND

+15V

+15V

+15V

+15V

+15V

Boat E128 Pin Table:

Vessel - E128
 JP6 24 Pin RIBBON CABLE -->

Use Name
Pin

Number
Pin

Number Name Use
 NC 1 24 NC
 PU7 2 23 GND
 PU6 3 22 PU5

RESET BUTTON (IN) PT0 4 21 PU4
 PT1 5 20 PU3

SIREN (OUT) PT2 6 19 PU2
WATER (OUT) PT3 7 18 PU1 LMOTOR_PWM (OUT)

RMOTOR_DIR (OUT) PT4 8 17 PU0 RMOTOR_PWM (OUT)
LMOTOR_DIR (OUT) PT5 9 16 PE7

TEAM_COLOR_RED (OUT) PT6 10 15 PT7 TEAM_COLOR_BLUE (OUT)
 PE0 11 14 PE1
 NC 12 13 NC

<-- RIBBON CABLE JP5 20 Pin

Use Name
Pin

Number
Pin

Number Name Use
 GND 1 20 GND

XBEE DOUT (IN) PS2 2 19 PP5
XBEE DIN (OUT) PS3 3 18 PP4

Ibutton Select PP2 4 17 PP3
 PP0 5 16 PP1
 PAD0 6 15 PAD4
 PAD1 7 14 PAD5

 PAD2 8 13 PAD6
 PAD3 9 12 PAD7

 GND 10 11 GND

<-- KEY JP2 5 Pin

Use Name
Pin

Number
 PS7/SS 1
 PS6/SCK 2
 GND 3
 PS5/MOSI 4
 PS4/MISO 5

Helm JP5 Board – iButton, Xbee, Joystick:
This board is virtually a copy of the boat iButton and Xbee board. Since the JP5 connector on the E128 also
has the analog input port, this includes a connection for the joystick.

GND 20

PP5 19

PP4 18

PP3 17

PP1 16

PAD4 15

PAD5 14

PAD6 13

PAD7 12

GND 11

GND1

PS22

PS33

PP24

PP05

PAD06

PAD17

PAD28

PAD39

GND10

E
12

8
JP

5

E128_JP5

JP22

XBEE DOUT

XBEE DIN

Ibutton Select

Steering

Speed

1
2
3
4
5
6

Joystick

JP27

Steering

Speed

+5

+5

1
2
3
4
5
6

XBee

JP24

+5
XBEE DOUT
XBEE DIN

1
2

5V from E128

JP23+5

RESET
1K

R6

Vss 20

RA0/AN0 19

RA1/AN1 18

RA2/AN2 17

RC0/AN4 16

RC1/AN5 15

RC2/AN6 14

RB4/SDI 13

RB5/RX 12

RB6/SCK 11

Vdd1

RA5/OSC12

RA4/AN3/OSC23

RA3/MCLR4

RC5/CCP15

RC4/C2OUT6

RC3/AN77

RC6/SS8

RC7/SDO9

RB7/TX10

16
F6

90

PIC16F690

iButton1

+5
X2

+5

1K
R7

RESET

2

PS7/SS 1

PS6/SCK 2

GND 3

PS5/MOSI 4

PS4/MISO 5

E
12

8
JP

2

E128_JP2

JP26

Ibutton Select

MISO

MOSI

SCK

SS

MISO

SCK

SS

MOSI

iButton LED

Tx/Rx

LED + 4

LED - 3

DATA 2

GND 1

iB
utton

IBUTTON

JP25

1K

R8

iButton LED

+5

5K
R5

Tx/Rx

Helm iButton, Xbee, and Joystick Board

Helm JP6 Board – Inputs and Servos:
This board has inputs for the various buttons on the helm, and outputs to control the servos that indicate
team number and active base. A MOSFET is used to power the siren.

1

PU72

PU63

PT04

PT15

PT26

PT37

PT48

PT59

PT610

PT711

12

24

GND 23

PU5 22

PU4 21

PU3 20

PU2 19

PU1 18

PU0 17

PE7 16

PT7 15

PE1 14

13

E
12

8
- J

P6

E128_JP6

JP29

Special Button 0

Special Button 1

Water Button

Reset Button

Stand Down BoatServo2

BaseServo

BoatServo1

+5

10K
R9

Special Button 0

1
2

Special Button 0

JP31

+5

10K
R10

Special Button 1

1
2

Special Button 1

JP32

+5

10K
R11

Water Button

1
2

Water Button

JP33

1
2
3

Team Color Servo

JP34

BoatServo1

+5
1
2
3

Active Base Servo

JP35

BaseServo

+5
1
2
3

Boat Num Servo

JP36

+5

1
2

5V from E128

JP28+5

IRLZ34N
Q6Stand Down

1
2

Stand Down Siren

JP30+5

BoatServo2

Helm Inputs and Servo Board

Helm Power Management:
The helm is powered by two 7.2 V NiCad batteries which are wired in parallel. The
output of the batteries runs through a 10 Amp fuse to protect our microprocessor and
circuits in case something goes awry. There is also a switch which is used to power on
and off the entire electrical system. Voltage regulation is handled by the voltage
regulator on the E128 protection board.

Our calculations show that our helm is capable of running for 15 hours off of these two
batteries. Each of the batteries provides 1500 mAh and the average current draw of our
entire electrical system is 200 mA. Thus our runtime is 15 hours (3000 mAh / 200 mA).

1
2

Battery 1

JP38

1
2

Battery 2

JP39

10A Fuse

F1

Main Power

S1

1
2

E128 Power

JP37

Helm E128 Pin Table

Helm - E128
 JP6 24 Pin RIBBON CABLE -->

Use Name Pin Number Pin Number Name Use
 NC 1 24 NC
 PU7 2 23 GND
 PU6 3 22 PU5

Special Button 0 (IN) PT0 4 21 PU4 ACTIVE BASE SERVO (OUT)
Special Button 1 (IN) PT1 5 20 PU3
WATER BUTTON (IN) PT2 6 19 PU2
RESET BUTTON (IN) PT3 7 18 PU1 RED BOAT NUM (OUT)
STAND DOWN (OUT) PT4 8 17 PU0 BLUE BOAT NUM (OUT)

 PT5 9 16 PE7
 PT6 10 15 PT7
 PE0 11 14 PE1
 NC 12 13 NC

<-- RIBBON CABLE JP5 20 Pin
Use Name Pin Number Pin Number Name Use

 GND 1 20 GND
XBEE DOUT (IN) PS2 2 19 PP5
XBEE DIN (OUT) PS3 3 18 PP4

Ibutton Select PP2 4 17 PP3
 PP0 5 16 PP1

STEERING (IN) PAD0 6 15 PAD4
SPEED (IN) PAD1 7 14 PAD5

 PAD2 8 13 PAD6
. PAD3 9 12 PAD7

 GND 10 11 GND

<-- KEY JP2 5 Pin
Use Name Pin Number

 PS7/SS 1
 PS6/SCK 2
 GND 3
 PS5/MOSI 4
 PS4/MISO 5

Selected component values and calculations:

Power MOSFETs (IRLZ34N)
Max voltage: 55V
Max current: 30A
Bilge pump draw: 2.5A
Indicator light draw: 100mA
Siren draw: 100mA

 All devices are well under the max capacity, even without heat sinks.

Motor Drivers (TLE5206-2):
Rated continuous current: 5 A
Rated peak current: 6 A
Max Stall Current:
Motor coil resistance: 1.8 ohms
Max supply voltage: ~7 V
Max stall current (V/R): ~4 A

 Under limit. In practice, current draw was about 2A.

Regulator on E128 Board:
Max current: 1 A
Average current draw for Helm: 200 mA
E128-powered devices on boat: 250 mA

 All is good.

Bill of Materials*

Boat:

Description Quantity
Unit
Cost Total

1/2 sheet Pink Foam 1 $10.00 $10.00
2 ft section 4" ABS pipe 1 $4.95 $4.95
4" ABS end cap 2 $6.58 $13.16
4mm Motor shaft 2 $10.55 $21.10
4mm Universal Joint 2 $7.65 $15.30
35mm, 2 blade propeller 2 $3.60 $7.20
Shaft grease (waterproofing) 1 $3.29 $3.29
500 GPH Bilge Pump 2 $15.00 $30.00
1-1/4" PVC pipe 1 $5.00 $5.00
Maxon A-max 6V motor 2 $0.00 $0.00
Perf Board 3 $2.95 $8.85

Helm:
Weber Grill 1 $0.00 $0.00
Spatula 1 $0.00 $0.00
Mustard Bottle 1 $2.49 $2.49
Servos 3 $0.00 $0.00
Perf Board 2 $2.95 $5.90

Odds and Ends:
Wire of various gages 1 $0.00 $0.00
Paint and stuff 1 $0.00 $0.00
Lots of molex 1 $5.00 $5.00
Switches and Lights 1 $10.00 $10.00

Grand
Total $142.24

* cost = $0 denotes part was donated, found, stolen, or
otherwise acquired

SOFTWARE DESIGN

Software Overview

We thanked ourselves everyday for our decision to use an E128 as the primary processor
on both the boat and the helm. This allowed us to do the vast majority of our
programming in C (versus the assembly language used on the PICs). Programming in C
made it much easier to create and debug robust state machines for both the helm and
boat. We were also able to share a lot of the code between the boat and the helm which
made it much easier to make system wide changes.

Our boat and helm implemented the state machines that were created by the
communication committee. The committee essentially laid out exactly how our software
needed to behave so all we had to do was implement it. Below is a description of how
the helm and boat behave during game play. This is lifted from the document the
communications committee created and is what we used as a reference when coding.

Pairing
When powered up, the helms and craft enter a ‘waiting for iButton’ state.

Once a helm detects an iButton, the serial number is read and the helm enters the
‘waiting for sync’ state. Once in this state, the helm attempts to sync with a craft
by repeatedly broadcasting an IBUTTON message containing the identity of the
read iButton. Similarly, crafts also power up into a ‘waiting for iButton’ state.
Once a craft reads an iButton, it transitions to a ‘waiting for sync’ state in which it
monitors all broadcast messages sent by the helms.

When a craft receives an IBUTTON broadcast message, it checks the

iButton identification data. If this data matches the iButton read by the craft, it
transitions into the ‘game’ state. During this transition, the craft stores the address
of the helm that sent the message and sends a MATCHED message in response
to the helm. This message informs the helm which craft it is controlling for the
remainder of the round. In the future, the helm may only send commands to that
particular craft and the craft must only respond to commands from that helm and
the admirals.

Pre-Game Operation

After successfully pairing, both the helm and craft should check the serial
number from the iButton and display their team affiliation (odd serial numbers are
for red team and even serial numbers are for blue teams). While this display could
be performed immediately upon receiving an iButton serial number, it should be
activated only when the craft has successfully paired with its helm. This display
will indicate not only affiliation, but also, a successful pairing. Furthermore, after
pairing, the helm must indicate to the helmsperson the number of the craft it is
controlling.

The helm should at this point transition to a ‘wait for game’ state. While in
this state the helm should send NO_ACTION commands at a rate of 5Hz in order
to maintain the RF link with the craft and prevent it from moving. Meanwhile, the
craft will transition to a ‘game’ state.

Helms remain in the ‘waiting for game’ state until the admirals broadcast

the START_OF_GAME command. Once this command is issued, the game
begins and helms may commence sending COMMAND signals to craft. Each
COMMAND signal indicates the desired speed, direction, water delivery status
(on/off), and all other special commands (see table of commands for more
details). Admirals must then transmit a RED/BLUE_GOAL command to specify
which goal is active.

Admiral Commands

During the game, admirals may send STAND_DOWN or HARD /
SOFT_RESET commands directly to any craft. When a STAND_DOWN
command is received, the craft must cease all activity and pass this command
along to the helm. It is encouraged, but not required, that the craft also visibly
communicate that it is disabled to observers of the match. The craft must take no
action other than retransmitting STAND_DOWN_RECEIVED to the helm until
the helm acknowledges the transmission. Once the helm receives and
acknowledges the STAND_DOWN_RECEIVED command, it should send
NO_ACTION commands until the stand down period expires (10 seconds) and
display that the craft has been stood down to the helmsperson.

When a craft receives a HARD_RESET command from the Admiral, it

must stop what it is doing, reset its team association, disassociate from its helm,
and return to the initial ‘waiting for iButton’ state. A SOFT_RESET command is
similar to a HARD_RESET command except that the craft remains in the ‘game’
state and does not disassociate from its paired helm. In other words, after
receiving a SOFT_RESET command, the craft shut off all actuators, water, and
special abilities then listens for new commands from its previously paired helm.

Admirals may also broadcast a RED/BLUE_GOAL broadcast command

to all helms/craft. Upon, receiving this command, all helms must indicate the
active base and players must move their craft to the proper side of the playfield, or
be subject to a STAND_DOWN command.

Admirals may also PING craft or helms in order to determine the state

and pairing of each craft/helm. Upon receiving a PING command, crafts and
helms must respond with their state and pairing.

At the end of the game, the admirals will issue an END_GAME

command. Upon receiving this command, helms will cease all water delivery and
may only send motion commands directing craft back to the starting area. After
all craft have returned, the admiralty will broadcast a HARD_RESET command

to all craft and helms in order to break all helm/craft pairings. Helms and craft
should both respond to this command by disassociating from their paired
craft/helm, resetting all visible team/craft affiliations, and returning to the
‘waiting for iButton’ state.

Communications Failure

If, at any time, the helm and craft fall out of communication (no packets
are received by the craft) for a period of greater than three seconds, the craft must
turn off all actuators, water, and special functions. This is to prevent damage from
and to the uncontrolled craft. Unless a HARD_RESET command is issued, the
craft should continue to listen for commands from the helm. Control of the craft
should resume as normal once communications are reestablished (possibly by
bringing the helm into the receiving range of the craft).

State Diagrams

Craft

Helm

E128 Code Listing
boat.h

#ifndef BOAT
#define BOAT

//FUNCTION PROTOTYPES
// Public Function Prototypes
int RunBoatSM(int CurrentEvent);
void StartBoatSM (void);
int QueryBoatSM (void);
int CheckBoatEvents (void);

//Private function prototypes
static int During_BST_WAITING_FOR_IBUTTON(int Event);
static int During_BST_LOOKING_FOR_HELM(int Event);
static int During_BST_PLAYING_GAME(int Event);
static int During_BST_STANDING_DOWN(int Event);
static void ParseNavByte(unsigned char NAV);
static void ParseSpecialByte(unsigned char SPEC);

#endif

boat.c

//----------- boat.c ---------------//
//-- code courtesy of WeinerMeister-//
//----------------------------------//

//boat.c contains any code that is specific to the boat, including propeller control

#include "headers.h"

//global variables
extern unsigned char GMyTeam;

/*---------------------------- Module Variables ---------------------------*/
// everybody needs a state variable, you may need others as well
static int CurrentState = 0;

/*---------------------------- Boat Event Checkers ------------------------*/

//main event checker for the boat state machine
//most events occur as a result of a new xbee communication packet, which we parse here
int CheckBoatEvents(void)
{
 int CurrentEvent = EV_NO_EVENT;
 int KeyStroke;

 //Check for events
 //These events should be arranged in order of priority, since
 //if two events are encountered at once, only process the first one so the second
is processed the next time around

 if(CheckXbeeRX()){
 CurrentEvent = EV_NEW_XBEE;
 }
 else if(CheckSendTimer()){
 CurrentEvent = EV_TMR_SEND;
 }

 #ifdef SIMULATE_EVENTS //this allows us to simulate our state machine using
keyboard presses
 if (kbhit() != 0){ //there was a key pressed
 KeyStroke = getchar();
 switch(toupper(KeyStroke)){

 case 'N' : CurrentEvent = EV_NEXT; break;
 }
 //check for signals that we want to send an admiral command
 SimulateAdmiral(KeyStroke);
 }
 #endif

 return(CurrentEvent);
}

/*---------------------------- Boat State Machine ---------------------------*/
int RunBoatSM(int CurrentEvent)
{
 unsigned char MakeTransition = FALSE;/* are we making a state transition? */
 int NextState = CurrentState;

 //print out our current state machine status
 if(CurrentEvent != EV_NO_EVENT)
 PrintState(CurrentState, CurrentEvent);

 switch (CurrentState)
 {
 case BST_WAITING_FOR_IBUTTON :
 // Execute During function for state one. EV_ENTRY & EV_EXIT are processed here
 CurrentEvent = During_BST_WAITING_FOR_IBUTTON(CurrentEvent);
 //process any events
 if (CurrentEvent != EV_NO_EVENT)
 {
 switch (CurrentEvent)
 {
 case EV_NEXT: //if a next command is pressed, skip ahead
 NextState = BST_LOOKING_FOR_HELM;
 MakeTransition = TRUE;
 break;
 case EV_IBUTTON: //If an ibutton tapped us, move on
 NextState = BST_LOOKING_FOR_HELM;
 MakeTransition = TRUE;
 break;
 }
 }
 break;

 case BST_LOOKING_FOR_HELM :
 // Execute During function for state one. EV_ENTRY & EV_EXIT are processed
here
 CurrentEvent = During_BST_LOOKING_FOR_HELM(CurrentEvent);
 //process any events
 if (CurrentEvent != EV_NO_EVENT)
 {
 switch (CurrentEvent)
 {
 case EV_NEXT: //if a next command is pressed, skip ahead
 SimulateIbutton(IAMBOAT); //hard code the other zigbee address
into our communications
 NextState = BST_PLAYING_GAME;
 MakeTransition = TRUE;
 break;

 case EV_MATCHED: //We are matched with the helm, so move on
 NextState = BST_PLAYING_GAME;
 MakeTransition = TRUE;
 break;

 case EV_HARD_RESET: //We are being reset to read another ibutton
 NextState = BST_WAITING_FOR_IBUTTON;
 MakeTransition = TRUE;
 break;
 }
 }
 break;

 case BST_PLAYING_GAME :
 // Execute During function for state one. EV_ENTRY & EV_EXIT are processed here
 CurrentEvent = During_BST_PLAYING_GAME(CurrentEvent);
 //process any events
 if (CurrentEvent != EV_NO_EVENT)
 {
 switch (CurrentEvent)
 {
 case EV_STAND_DOWN: //We have been asked to stand down, so stop all
actuation
 NextState = BST_STANDING_DOWN;
 MakeTransition = TRUE;
 break;
 case EV_NEXT: //if a next command is pressed, skip ahead
 NextState = BST_WAITING_FOR_IBUTTON;
 MakeTransition = TRUE;
 break;
 case EV_HARD_RESET: //We are being broken up from our helm
 NextState = BST_WAITING_FOR_IBUTTON;
 MakeTransition = TRUE;
 break;
 }
 }
 break;

 case BST_STANDING_DOWN :
 // Execute During function for state one. EV_ENTRY & EV_EXIT are processed here
 CurrentEvent = During_BST_STANDING_DOWN(CurrentEvent);
 //process any events
 if (CurrentEvent != EV_NO_EVENT)
 {
 switch (CurrentEvent)
 {
 case EV_NEXT: //if a next command is pressed, skip ahead
 NextState = BST_PLAYING_GAME;
 MakeTransition = TRUE;
 break;
 case EV_PLAY_ON: //Continue playing the game, now that stand down is
acknowledged by helm
 NextState = BST_PLAYING_GAME;
 MakeTransition = TRUE;
 break;
 }
 }
 break;
 }

 // Check for error events, and printout
 if(CurrentEvent == EV_ERROR)
 printf("EV_ERROR FOUND!\r\n");

 // If we are making a state transition
 if (MakeTransition == TRUE)
 {
 // Execute exit function for current state
 RunBoatSM(EV_EXIT);
 CurrentState = NextState; //Modify state variable
 // Execute entry function for new state
 RunBoatSM(EV_ENTRY);
 }

 return(CurrentEvent);
}

/**
Function
StartGameSM
**/
void StartBoatSM (void)
{

 CurrentState = BST_WAITING_FOR_IBUTTON;
 // call the entry function (if any) for the ENTRY_STATE
 RunBoatSM(EV_ENTRY);
}

int QueryBoatSM (void)
{
 return(CurrentState);
}

/***
 private functions
 ***/

static int During_BST_WAITING_FOR_IBUTTON(int Event){
 // process EV_ENTRY & EV_EXIT events
 if (Event == EV_ENTRY)
 {
 //reset all module variables and stop all actuators
 GMyTeam = NOTEAM;
 Stop(); //stop both propellers
 EraseStoredSerial(); //erase previously stored ibutton serial
 PTT &= BIT6LO; //reset team lights
 PTT &= BIT7LO;
 }else if (Event == EV_EXIT)
 {
 }else
 // do the 'during' function for this state
 {
 //check for ibutton touch and update team affiliation accordingly
 if(RequestIbutton()) //if there is an ibutton present with a valid serial number,
move on
 return EV_IBUTTON;
 }
 return Event;
}

static int During_BST_LOOKING_FOR_HELM(int Event){
 // process EV_ENTRY & EV_EXIT events
 if (Event == EV_ENTRY)
 {
 }else if (Event == EV_EXIT)
 {
 }else
 // do the 'during' function for this state
 {
 //listen for xbee communications
 if(Event == EV_NEW_XBEE){
 if(GetXbeeByte0() == IBUTTON){ //is the communication telling us about an
ibutton?
 if(CheckSerialMatch()){
 printf("We have a matched serial number! AKA we got that bitch\r\n");
 //we're a match, so do what we need to
 //get to know each others' zigbee addresses
 ImprintPartner();

 //set our team affiliation based on ibutton serial number
 // (moved light illumination into here)
 SetTeam(GetStoredSerialLSB());

 //send message to the helm telling it that we have a match
 Send218Data(TO_PARTNER, WATERCRAFT, MATCHED_1, MATCHED_2);

 //and move to the game
 return EV_MATCHED;
 }
 }
 }
 }
 return Event;
}

static int During_BST_PLAYING_GAME(int Event){
 // process EV_ENTRY & EV_EXIT events
 if (Event == EV_ENTRY)
 {
 //initialize and reset the timer the check for lost communication
 SetTimer(TMR_LOST_COMM, LOST_COMM_TIME);
 }else if (Event == EV_EXIT){
 //turn off all actuators
 Stop(); //stop both propellers
 }else
 // do the 'during' function for this state
 {
 //check xbee for admiral commands and nav commands
 if(Event == EV_NEW_XBEE){
 if(GetXbeeByte0() == ADMIRAL){ //admiral commands
 switch(GetXbeeByte2()){
 //if there is a stand down command, turn off all actuators and report
stand down to helm
 case STAND_DOWN: //0x01
 Send218Data(TO_ADMIRAL, ACK, 0, STAND_DOWN); //acknowledge
stand down command
 return EV_STAND_DOWN;
 break;
 //if there is a soft reset, turn off all actuators and stay in
this state
 case SOFT_RESET: //0x20
 Send218Data(TO_ADMIRAL, ACK, 0, SOFT_RESET); //acknowledge soft reset
 Stop(); //turn off all actuators
 ParseSpecialByte(0x00);//turn off water and all special
functions
 break;
 //hard reset command: go back to beginning of state machine
 case HARD_RESET: //0x40
 return EV_HARD_RESET;
 break;
 }

 }
 else if(GetXbeeByte0() == NAVIGATION){ //nav commands
 //kick the lost com timer
 SetTimer(TMR_LOST_COMM, LOST_COMM_TIME);
 ParseNavByte(GetXbeeByte1());
 ParseSpecialByte(GetXbeeByte2());
 }
 }
 //if there is no communication for three seconds, turn off all actuators and listen
 else if(CheckTimerExpired(TMR_LOST_COMM) == TRUE) {
 printf("We lost communication with helm. Turning off all actuators. \r\n");
 Stop(); //turn off all actuators
 ParseSpecialByte(0x00);//turn off water and all special functions
 }
 }
 return Event;
}

static int During_BST_STANDING_DOWN(int Event){
 // process EV_ENTRY & EV_EXIT events
 if (Event == EV_ENTRY)
 {
 Stop(); //turn off all actuators
 ParseSpecialByte(0x00);//turn off water and all special functions
 }else if (Event == EV_EXIT)
 {
 }else
 // do the 'during' function for this state
 {
 //check to see if the helm has acknowledged that we are standing down
 if(Event == EV_NEW_XBEE){
 if(GetXbeeByte0() == ACK){ //helm acknowledgement that craft is standing down
 printf("Helm acknowledged our stand down\r\n");

 return EV_PLAY_ON;
 }
 }
 else { //if we have not been acknowledged, try again
 //tell the helm that we are standing down
 Send218Data(TO_PARTNER, WATERCRAFT, STAND_DOWN_RECEIVED_1,
STAND_DOWN_RECEIVED_2);
 }
 }
 return Event;
}

/*---------------------------- End state machine ---------------------------*/

//Parses an 8-bit nav byte containing speed and direction information
//translates speed and direction into L and R prop power
//R = speed + direction
//L = speed - direction
static void ParseNavByte(unsigned char NAV) {
 unsigned char spdNIB; //speed (from lower nibble; 0=reverse, F=forward, 8=stopped)
 unsigned char dirNIB; //direction (from upper nibble; 0=fullL, F=fullR, 8=straight)
 char Lpower, Rpower;
 char Ldirection = FORWARD; //actual calculated L motor direction
 char Rdirection = FORWARD; //actual calculated R motor direction
 char dutyValues[8] = {0,28,40,52,64,76,88,100};

 printf("NAV BYTE = %x\r\n", NAV);
 //separate out speed and direction nibbles
 spdNIB=NAV&(0x0F); //mask out the upper nibble
 dirNIB=(NAV&(0xF0))>>4; //mask out the lower nibble, then shift data into the lower
nibble

 //calculate relative left and right power based on speed and direction
 //FIX THIS HACKY CONVERSION CODE
 Lpower=(spdNIB-8)-(dirNIB-8); //now centered around 0 (positive=FWD, negative=BACK)
 Rpower=(spdNIB-8)+(dirNIB-8); //now centered around 0

 //convert to duty and direction
 if(Lpower < 0){
 Ldirection = BACKWARD;
 Lpower *= -1;
 }
 if(Rpower < 0){
 Rdirection = BACKWARD;
 Rpower *= -1;
 }

 //make sure power values are in range
 if(Lpower > 7)
 Lpower = 7;
 if(Rpower > 7)
 Rpower = 7;

 //look up duty cycles in a table, and set the motors
 SetMotor(L_MOTOR, Ldirection, dutyValues[Lpower]);
 SetMotor(R_MOTOR, Rdirection, dutyValues[Rpower]);

 //print debugging functions
 printf("SpeedNIB = %d | DirectionNIB = %d \r\n",spdNIB,dirNIB);
 printf("Lpower = %d | Rpower = %d \r\n",Lpower,Rpower);
 printf("Lmotor = %d (dir=%d) | Rmotor = %d (dir=%d)
\r\n\r\n",dutyValues[Lpower],Ldirection,dutyValues[Rpower],Rdirection);
}

//Parses an 8-bit special byte, following a navigation header
static void ParseSpecialByte(unsigned char SPEC){
 printf("SPEC BYTE = %x\r\n", SPEC);
 //special button 0 or special button 1 is active
 if((SPEC & (0x30)) != 0){
 printf("Special active. Siren on!\r\n");
 PTT |= BIT2HI; //turn on siren output

 }else{
 printf("Specials off.\r\n");
 PTT &= BIT2LO; //turn off siren output
 }

 //parse water shooting
 if((SPEC & (0x0F)) != 0){ //if water is shooting
 printf("Water shooter on!\r\n");
 PTT |= BIT3HI; //turn on water output
 }else{
 printf("Water off.\r\n");
 PTT &= BIT3LO; //turn off water output
 }
}

//------------ TEST FUNCTION -----------------//

#ifdef BOAT_TEST //send a string of commands to the boat and see how L and R motors
respond

void main(void){
 InitAll();

 while(TRUE){
 PrintDecAsBin(0x8F);
 printf(" - Full straight Forward! \r\n");
 ParseNavByte(0x8F);
 Wait(1500);

 PrintDecAsBin(0x83);
 printf(" - Partial straight backward \r\n");
 ParseNavByte(0x83);
 Wait(1500);

 PrintDecAsBin(0xFF);
 printf(" - Full right forward \r\n");
 ParseNavByte(0xFF);
 Wait(1500);

 PrintDecAsBin(0x25);
 printf(" - Partial left backward \r\n");
 ParseNavByte(0x25);
 Wait(1500);

 PrintDecAsBin(0x88);
 printf(" - Stopped \r\n");
 ParseNavByte(0x88);
 Wait(1500);
 }
}

#endif

defines.h

#ifndef DEFINES
#define DEFINES

//Test defines
#define HELM_MAIN
//#define BOAT_MAIN
//#define PWM_TEST
//#define BOAT_TEST
//#define IBUTTON_SPI_TEST
//#define XBEE_TEST
//#define SERVO_TEST
//#define HELM_TEST
//#define HELM_SERVO_TEST
#define SIMULATE_EVENTS //don't really need it but for simulating events

//who am I (depends on program target)

#define IAMBOAT 0
#define IAMHELM 1

//team affiliation
#define NOTEAM 0
#define RED 1
#define BLUE 2
#define BASEA 3
#define BASEB 4

//send-to definitions
#define TO_BROADCAST 0
#define TO_PARTNER 1
#define TO_ADMIRAL 2

//Convenience
#define TRUE 1
#define FALSE 0
#define SUCCESS 0
#define FAILURE 1

//assign timer numbers
#define TMR_WAIT 0
#define TMR_SEND 1 //keeps track of period between sends during game at rate
of 5Hz
#define TMR_LOST_COMM 2 //if comm with partner is lost for three seconds
#define TMR_STAND_DOWN 3 //for letting us know when we can start playing again
#define TMR_MUSTARD_SHAKE 4
#define SEND_RATE 200 //send new data every 200ms (CHANGE BACK!!)
#define STAND_DOWN_TIME 10000 //stand down lasts for 10 seconds
#define LOST_COMM_TIME 3000 //how much time we will tolerate no comm from helm
#define MUSTARD_SHAKE_TIME 1000 //number of milliseconds that the mustard should come out
after you shake

//STATES
//boat state machine
#define BST_WAITING_FOR_IBUTTON 1
#define BST_LOOKING_FOR_HELM 2
#define BST_PLAYING_GAME 3
#define BST_STANDING_DOWN 4
//helm state machine
#define HST_WAITING_FOR_IBUTTON 1
#define HST_LOOKING_FOR_BOAT 2
#define HST_WAITING_FOR_GAME_START 3
#define HST_PLAYING_GAME 4
#define HST_CRUISING_POST_GAME 5
#define HST_STANDING_DOWN 6

//EVENTS
//general
#define EV_NO_EVENT 1
#define EV_ENTRY 2
#define EV_EXIT 3
#define EV_ERROR 4
//helm commands to craft
#define EV_NO_ACTION 5 //signal
#define EV_IBUTTON 6 //event if a valid ibutton is received
//admiral commands to craft
#define EV_STAND_DOWN 7
#define EV_GAME_START 8
#define EV_GAME_STOP 9
#define EV_HARD_RESET 10
//timer events
#define EV_TMR_SEND 11
#define EV_TMR_LOST_COMM 12 //if no communication for 3 seconds
//other
#define EV_MATCHED 13
#define EV_PLAY_ON 14
#define EV_NEXT 15
#define EV_NEW_XBEE 16

//boating
#define R_MOTOR 1 //use to ID the right motor
#define L_MOTOR 0 //use to ID the left motor
#define BOTH_MOTORS 2 //makes both motors do their thing
#define FORWARD 1 //motor pushes the robot forward
#define BACKWARD 0 //motor pushes the robot backward
#define RIGHT 1
#define LEFT 0

//propellor motor PWM
#define PRESCALER 2 //24Mhz clock / 2 = 12 MHz
#define POSTSCALER 3 //12 MHz / (3*2) = 2000 kHz
#define MS (24000/(PRESCALER*POSTSCALER*2)) // =1000 defines the number of ticks in a
microsecond
#define MOTOR_PWM_PERIOD 100 //(MS/10) //MS/10 = 20kHz
#define DEFAULT_MOTOR_DUTY (MOTOR_PWM_PERIOD) //default duty cycle = 100%

//Ibutton
#define IBUTTON_RESET_BYTE 0xFF //arbitrary reset pattern

// SCI
#define BAUD_BITS 156 // (24000000/(16*156) = 9615 Baud) (very
wrong?)
#define XBEE_MESSAGE_SIZE 12
#define SET_TO_MASTER 1
#define SET_TO_SLAVE 0

//SERVO PWM HELPERS
#define PRESCALER_A 16 //24Mhz clock / 16 = 1500 Khz
#define POSTSCALER_A 36 //24Mhz / 16 / (2*36) = 20.83 kilohertz
#define MS_B (24000/(PRESCALER_A*POSTSCALER_A*2)) // = 20.83 defines the number of ticks
in a ms
#define SERVO_PWM_PERIOD 209 //(MS_B/200) = 50ish Hz
#define SERVO_MAX_DUTY 26
#define SERVO_MIN_DUTY 6 //used to be 2
#define SERVO_INIT_DUTY 6

#define ACTIVE_BASE_SERVO 4
#define RED_BOAT_NUM_SERVO 1
#define BLUE_BOAT_NUM_SERVO 0

//BOAT HELPERS
#define BOAT_PTT_INIT (BIT0LO) //0 is an input and the rest are outputs
#define BOAT_PTU_INIT (BIT0HI | BIT1HI); //Port U pins 0 and 1 are outputs
#define BOAT_PTAD_INIT ("AAAAAAAA") //0,1 are analog inputs the rest are inputs (but not
currently used)

//HELM HELPERS
#define HELM_PTT_INIT ((BIT0LO & BIT1LO & BIT2LO & BIT3LO)|(BIT4HI)) //0,1,2,3 are
inputs, 4 is an output
#define HELM_PTU_INIT (BIT0HI | BIT1HI | BIT4HI) //Port U pins 0, 1, and 4 are outputs
#define HELM_PTAD_INIT ("AAAAAAAA") //0,1 are analog inputs the rest are inputs (but not
currently used)

#define SPEED_PIN 1
#define DIRECTION_PIN 0
#define SPEED_CONVERSION 64
#define DIRECTION_CONVERSION 64

//------------- 218C Comm Definitions --------------------/
//Framing
#define START_BYTE 0x7E
#define LENGTH_MSB 0x00
#define LENGTH_LSB 0x08

//API identifier
#define API_RX 0x81
#define API_TX 0x01

//Frame ID: change this to non-zero if you wish
//your xBee to respond with a Tx Status message

#define FRAME_ID 0x00

//Addresses
#define ADMIRAL_ADDRESS_MSB 0xBC // This was AF before, but the
#define ADMIRAL_ADDRESS_LSB 0xFF // comm spec had a typo in it
#define HELM_MSB 0xBC
#define CRAFT_MSB 0xAF

//for ME218C Data Byte 0 Header
#define IBUTTON 0x01
#define NAVIGATION 0x02
#define ADMIRAL 0x04
#define WATERCRAFT 0x08
#define PING_RESPONSE 0x10
#define ACK 0x80

//Admiral Messages
#define STAND_DOWN 0x01
#define START_GAME 0x02
#define END_GAME 0x04
#define BLUE_GOAL 0x08
#define RED_GOAL 0x10
#define SOFT_RESET 0x20
#define HARD_RESET 0x40
#define ADMIRAL_PING 0x80

//Commands from Helm to Watercraft
#define NO_ACTION_1 0x88
#define NO_ACTION_2 0x00

//Commands from Watercraft to Helm
#define STAND_DOWN_RECEIVED_1 0x00
#define STAND_DOWN_RECEIVED_2 0x02

#define MATCHED_1 0x00
#define MATCHED_2 0x01

//Ping Responses
#define WAITING_IBUTTON 0x01
#define WAITING_PAIR 0x02
#define PAIRED 0x04

#endif

headers.h

#ifndef HEADERS
#define HEADERS

//Standard Libraries
#include "ME218_E128.h"
#include <hidef.h>
#include <mc9s12e128.h>
#include <bitdefs.h>

#include "S12eVec.h" /* vector addresses for interrupts */
#include <S12e128bits.h> /* bit definitions */

#include <timerS12.h>
#include <stdio.h>
#include <math.h>
#include <string.h>
#include "ADS12e.h"

//Our libraries
#include "boat.h"
#include "helm.h"
#include "defines.h"
#include "helpers.h"
#include "ibutton.h"

#include "main.h"
#include "motor.h"
#include "servo.h"
#include "xbee.h"

#endif

helm.h

#ifndef HELM
#define HELM

//FUNCTION PROTOTYPES
// Public Function Prototypes
int RunHelmSM(int CurrentEvent);
void StartHelmSM (void);
int QueryHelmSM (void);
int CheckHelmEvents(void);

//Private function prototypes
static int During_HST_CRUISING_POST_GAME(int Event);
static int During_HST_STANDING_DOWN(int Event);
static int During_HST_PLAYING_GAME(int Event);
static int During_HST_WAITING_FOR_GAME_START(int Event);
static int During_HST_LOOKING_FOR_BOAT(int Event);
static int During_HST_WAITING_FOR_IBUTTON(int Event);

static unsigned char GetSpeedLevel(void);
static unsigned char GetDirectionLevel(void);
static unsigned char CreateNavByte(void);
static unsigned char CreateSpecialByte(void);

//indicator control functions
static void SetBaseIndicator(unsigned char goal);
static void SetTeamIndicator(unsigned char team);

//switch checker functions
static unsigned char CheckResetState(void);
static unsigned char CheckSpec0State(void);
static unsigned char CheckSpec1State(void);
static unsigned char CheckWaterState(void);

#endif

helm.c

//----------- helm.c ---------------//
//-- code courtesy of WeinerMeister-//
//----------------------------------//

//helm.c contains any code that is specific to the helm, including reading all of the
inputs
//and sending zigbee packets to the boat

#include "headers.h"

//global variables
extern unsigned char GMyTeam;

//module variables
static unsigned char resetState, waterState;

/*---------------------------- Module Variables ---------------------------*/
// everybody needs a state variable, you may need others as well
static int CurrentState = 0;

/*---------------------------- Helm Event Checkers ------------------------*/

//main event checker for the helm state machine

//most events occur as a result of a new xbee communication packet, which we parse here
int CheckHelmEvents(void)
{
 int CurrentEvent = EV_NO_EVENT;
 int KeyStroke;

 //Check for events
 //These events should be arranged in order of priority, since
 //if two events are encountered at once, only process the first one so the second
is processed the next time around

 if(resetState != CheckResetState()){
 if(resetState == 0){
 resetState = 1; //toggle the state variable
 CurrentEvent = EV_HARD_RESET;
 } else
 resetState = 0;
 }

 if(CheckXbeeRX()){
 CurrentEvent = EV_NEW_XBEE;
 }
 else if(CheckSendTimer()){
 CurrentEvent = EV_TMR_SEND;
 }

 #ifdef SIMULATE_EVENTS //this allows us to simulate our state machine using
keyboard presses
 else if (kbhit() != 0){ //there was a key pressed
 KeyStroke = getchar();
 switch(toupper(KeyStroke)){
 case 'N' : CurrentEvent = EV_NEXT; break;
 }
 //check for signals that we want to send an admiral command
 SimulateAdmiral(KeyStroke);
 }
 #endif

 return(CurrentEvent);
}

/*---------------------------- Helm State Machine ---------------------------*/
int RunHelmSM(int CurrentEvent)
{
 unsigned char MakeTransition = FALSE;/* are we making a state transition? */
 int NextState = CurrentState;

 //print out our current state machine status
 if((CurrentEvent != EV_NO_EVENT) && (CurrentEvent != EV_NEW_XBEE))
 PrintState(CurrentState, CurrentEvent);

 switch (CurrentState)
 {
 case HST_WAITING_FOR_IBUTTON :
 // Execute During function for state one. EV_ENTRY & EV_EXIT are processed
here
 CurrentEvent = During_HST_WAITING_FOR_IBUTTON(CurrentEvent);
 //process any events
 if (CurrentEvent != EV_NO_EVENT)
 {
 switch (CurrentEvent)
 {
 case EV_NEXT: //if a next command is pressed, skip ahead
 NextState = HST_LOOKING_FOR_BOAT;
 MakeTransition = TRUE;
 break;
 case EV_IBUTTON: //If an ibutton tapped us, move on
 NextState = HST_LOOKING_FOR_BOAT;
 MakeTransition = TRUE;
 break;
 }

 }
 break;

 case HST_LOOKING_FOR_BOAT :
 // Execute During function for state one. EV_ENTRY & EV_EXIT are processed
here
 CurrentEvent = During_HST_LOOKING_FOR_BOAT(CurrentEvent);
 //process any events
 if (CurrentEvent != EV_NO_EVENT)
 {
 switch (CurrentEvent)
 {
 case EV_NEXT: //if a next command is pressed, skip ahead
 SimulateIbutton(IAMHELM); //hard code the other zigbee address into
our communications
 NextState = BST_PLAYING_GAME;
 MakeTransition = TRUE;
 break;
 case EV_MATCHED: //We are matched with the boat, so move on
 NextState = BST_PLAYING_GAME;
 MakeTransition = TRUE;
 break;
 case EV_HARD_RESET: //Go to initial state because we have been reset
 NextState = HST_WAITING_FOR_IBUTTON;
 MakeTransition = TRUE;
 break;
 }
 }
 break;

 case HST_WAITING_FOR_GAME_START :
 // Execute During function for state one. EV_ENTRY & EV_EXIT are processed here
 CurrentEvent = During_HST_WAITING_FOR_GAME_START(CurrentEvent);

 // HARD CODED TO START GAME RIGHT AWAY!!
 // REMOVE BEFORE FINAL CHECKOFF!
 //NextState = HST_PLAYING_GAME;
 //MakeTransition = TRUE;

 //process any events
 if (CurrentEvent != EV_NO_EVENT)
 {
 switch (CurrentEvent)
 {
 case EV_NEXT: //if a next command is pressed, skip ahead
 NextState = HST_PLAYING_GAME;
 MakeTransition = TRUE;
 break;
 case EV_GAME_START: //we got an admiral command saying to start to the
game
 NextState = HST_PLAYING_GAME;
 MakeTransition = TRUE;
 break;
 case EV_HARD_RESET: //Go to initial state because we have been reset
 NextState = HST_WAITING_FOR_IBUTTON;
 MakeTransition = TRUE;
 break;
 }
 }
 break;

 case HST_PLAYING_GAME :
 // Execute During function for state one. EV_ENTRY & EV_EXIT are processed here
 CurrentEvent = During_HST_PLAYING_GAME(CurrentEvent);
 //process any events
 if (CurrentEvent != EV_NO_EVENT)
 {
 switch (CurrentEvent)
 {
 case EV_STAND_DOWN: //if we get a stand down command, go into the stand
down state

 NextState = HST_STANDING_DOWN;
 MakeTransition = TRUE;
 break;
 case EV_NEXT: //if a next command is pressed, skip ahead
 NextState = HST_CRUISING_POST_GAME;
 MakeTransition = TRUE;
 break;
 case EV_GAME_STOP: //If we get a game over command from the admiral then
go to game over state
 NextState = HST_CRUISING_POST_GAME;
 MakeTransition = TRUE;
 break;
 case EV_HARD_RESET: //Go to initial state because we have been reset
 NextState = HST_WAITING_FOR_IBUTTON;
 MakeTransition = TRUE;
 break;
 }
 }
 break;

 case HST_STANDING_DOWN :
 // Execute During function for state one. EV_ENTRY & EV_EXIT are processed here
 CurrentEvent = During_HST_STANDING_DOWN(CurrentEvent);
 //process any events
 if (CurrentEvent != EV_NO_EVENT)
 {
 switch (CurrentEvent)
 {
 case EV_NEXT: //if a next command is pressed, skip ahead
 NextState = HST_PLAYING_GAME;
 MakeTransition = TRUE;
 break;
 case EV_PLAY_ON: //Continue playing the game, now that stand down is
acknowledged by helm
 NextState = HST_PLAYING_GAME;
 MakeTransition = TRUE;
 break;
 case EV_HARD_RESET: //Go to initial state because we have been reset
 NextState = HST_WAITING_FOR_IBUTTON;
 MakeTransition = TRUE;
 break;
 }
 }
 break;

 case HST_CRUISING_POST_GAME :
 // Execute During function for state one. EV_ENTRY & EV_EXIT are processed here
 CurrentEvent = During_HST_CRUISING_POST_GAME(CurrentEvent);
 //process any events
 if (CurrentEvent != EV_NO_EVENT)
 {
 switch (CurrentEvent)
 {
 case EV_NEXT: //if a next command is pressed, skip ahead
 NextState = HST_WAITING_FOR_IBUTTON;
 MakeTransition = TRUE;
 break;
 case EV_HARD_RESET: //Go to initial state because we have been reset
 NextState = HST_WAITING_FOR_IBUTTON;
 MakeTransition = TRUE;
 break;
 }
 }
 break;
 }

 // Check for error events, and printout
 if(CurrentEvent == EV_ERROR)
 printf("EV_ERROR FOUND!\r\n");

 // If we are making a state transition
 if (MakeTransition == TRUE)
 {
 // Execute exit function for current state
 RunHelmSM(EV_EXIT);
 CurrentState = NextState; //Modify state variable
 // Execute entry function for new state
 RunHelmSM(EV_ENTRY);
 }

 return(CurrentEvent);
}

/**
Function
StartGameSM
**/
void StartHelmSM (void)
{
 //do initialization of helm module variables here
 //Initialize initial state of actuators
 resetState = CheckResetState();
 waterState = CheckWaterState();

 CurrentState = HST_WAITING_FOR_IBUTTON;
 // call the entry function (if any) for the ENTRY_STATE
 RunHelmSM(EV_ENTRY);
}

int QueryHelmSM (void)
{
 return(CurrentState);
}

/***
 private functions
 ***/

static int During_HST_WAITING_FOR_IBUTTON(int Event){
 // process EV_ENTRY & EV_EXIT events
 if (Event == EV_ENTRY)
 {
 //reset all module variables and stop all actuators
 GMyTeam = NOTEAM;
 EraseStoredSerial(); //erase previously stored ibutton serial

 //reset all servos to initial position
 printf("Initializing servos to home position\r\n");
 SetBaseIndicator(NOTEAM);
 SetTeamIndicator(NOTEAM);

 //turn off siren to indicate we are no longer being stood down
 printf("Initializing siren to OFF\r\n");
 PTT &= BIT4LO;

 }else if (Event == EV_EXIT)
 {
 }else
 // do the 'during' function for this state
 {
 //check for ibutton touch and update team affiliation accordingly
 if(RequestIbutton()) //if there is an ibutton present with a valid serial number,
move on
 return EV_IBUTTON;
 }
 return Event;
}

static int During_HST_LOOKING_FOR_BOAT(int Event){
 // process EV_ENTRY & EV_EXIT events
 if (Event == EV_ENTRY)

 {
 }else if (Event == EV_EXIT)
 {
 }else
 // do the 'during' function for this state
 {
 //do we need to send zigbee communications
 if(Event == EV_TMR_SEND){
 //send serial number
 Send218Data(TO_BROADCAST, IBUTTON, GetStoredSerialMSB(), GetStoredSerialLSB());
 }

 //listen for xbee communications
 if(Event == EV_NEW_XBEE){
 if(GetXbeeByte0() == WATERCRAFT){ //is the communication telling us about an
ibutton?
 if((GetXbeeByte1() == MATCHED_1) && (GetXbeeByte2() == MATCHED_2)){
 //we're a match, so do what we need to
 //get to know each others' zigbee addresses
 ImprintPartner();

 //set our team affiliation (this feels weird for Mr. Helm)
 SetTeam(GetStoredSerialLSB());
 //turn on our team servo
 SetTeamIndicator(GetTeamNumber()); //use the team # to set our team
affiliation
 //and move to the waiting for game start stage

 return EV_MATCHED;
 }
 }
 }
 }
 return Event;
}

static int During_HST_WAITING_FOR_GAME_START(int Event){
 // process EV_ENTRY & EV_EXIT events
 if (Event == EV_ENTRY)
 {
 }else if (Event == EV_EXIT){
 //do nothing
 }else
 // do the 'during' function for this state
 {

 //do we need to send zigbee communications
 if(Event == EV_TMR_SEND){
 //send no action
 Send218Data(TO_PARTNER, NAVIGATION, NO_ACTION_1,NO_ACTION_2);
 }

 //check xbee for admiral command to start game
 if(Event == EV_NEW_XBEE){
 if(GetXbeeByte0() == ADMIRAL){ //admiral commands
 if(GetXbeeByte2() == START_GAME){
 Send218Data(TO_ADMIRAL, ACK, 0, START_GAME); //acknowledge game
has started
 return EV_GAME_START;
 }
 }
 }
 }
 return Event;
}

static int During_HST_PLAYING_GAME(int Event){
 // process EV_ENTRY & EV_EXIT events
 if (Event == EV_ENTRY)
 {
 }else if (Event == EV_EXIT)

 {
 }else
 // do the 'during' function for this state
 {
 //check xbee for admiral commands and nav commands
 if(Event == EV_NEW_XBEE){
 if(GetXbeeByte0() == WATERCRAFT){ //watercraft commands
 if(GetXbeeByte2() == STAND_DOWN_RECEIVED_2)
 //Acknowledge the boat is standing down
 Send218Data(TO_PARTNER, ACK, STAND_DOWN_RECEIVED_1,
STAND_DOWN_RECEIVED_2);
 return EV_STAND_DOWN;
 }
 // Check for admiral commands
 else if(GetXbeeByte0() == ADMIRAL){ //admiral commands
 switch (GetXbeeByte2())
 {
 case END_GAME :
 Send218Data(TO_ADMIRAL, ACK, 0, END_GAME);
//acknowledge game has ended
 return EV_GAME_STOP;
 break;
 case HARD_RESET :
 return EV_HARD_RESET;
 break;
 case BLUE_GOAL :
 SetBaseIndicator(BASEA); //Turn on blue goal servo
 break;
 case RED_GOAL :
 SetBaseIndicator(BASEB); //Turn on blue goal servo
 break;
 }
 }
 }
 // if it is time to send, then we send nav and special data to our boat
 if(Event == EV_TMR_SEND)
 {
 Send218Data(TO_PARTNER, NAVIGATION, CreateNavByte(), CreateSpecialByte());
 }
 }
 return Event;
}

static int During_HST_STANDING_DOWN(int Event){
 // process EV_ENTRY & EV_EXIT events
 if (Event == EV_ENTRY)
 {
 SetTimer(TMR_STAND_DOWN, STAND_DOWN_TIME);

 //turn on siren to indicate we are being stood down
 printf("Turning on siren as we stand down\r\n");
 PTT |= BIT4HI;

 }else if (Event == EV_EXIT)
 {
 //turn off siren to indicate we are no longer being stood down
 printf("Turning off siren as we exit stand down\r\n");
 PTT &= BIT4LO;

 }else
 // do the 'during' function for this state
 {
 //check xbee for admiral commands and nav commands
 if(Event == EV_NEW_XBEE){

 // Check for admiral commands
 if(GetXbeeByte0() == ADMIRAL){ //admiral commands
 switch (GetXbeeByte2())
 {
 case END_GAME :
 return EV_GAME_STOP;

 break;
 case HARD_RESET :
 return EV_HARD_RESET;
 break;
 case BLUE_GOAL :
 SetBaseIndicator(BLUE); //Turn on blue goal servo
 break;
 case RED_GOAL :
 SetBaseIndicator(RED); //Turn on blue goal servo
 break;
 }
 }

 }
 //Check if stand down timer is expired
 if(CheckTimerExpired(TMR_STAND_DOWN))
 return EV_PLAY_ON;

 //do we need to send zigbee communications
 if(Event == EV_TMR_SEND)
 //Send218Data(TO_PARTNER, NAVIGATION, NO_ACTION_1,NO_ACTION_2);
 Send218Data(TO_PARTNER, ACK, STAND_DOWN_RECEIVED_1, STAND_DOWN_RECEIVED_2); //keep
acknowledging to make sure our boat knows that we know that it's standing down
 }
 return Event;
}

static int During_HST_CRUISING_POST_GAME(int Event){
 // process EV_ENTRY & EV_EXIT events
 if (Event == EV_ENTRY)
 {
 SetBaseIndicator(NOTEAM);
 SetTeamIndicator(NOTEAM);
 }else if (Event == EV_EXIT)
 {
 }else
 // do the 'during' function for this state
 {
 //check xbee for admiral commands and nav commands
 if(Event == EV_NEW_XBEE){
 // Check for admiral commands
 if(GetXbeeByte0() == ADMIRAL){ //admiral commands
 if (GetXbeeByte2() == HARD_RESET)
 return EV_HARD_RESET;
 }
 }
 // if it is time to send, then we send nav and special data to our boat
 if(Event == EV_TMR_SEND)
 {
 Send218Data(TO_PARTNER, NAVIGATION, CreateNavByte(), 0x00);
 }
 }
 return Event;
}

//-------------------------- END OF DURING FUNCTIONS -----------------------------------/

// Creates the special byte, which will be sent to the boat
static unsigned char CreateSpecialByte (void)
{
 unsigned char special_byte = 0;

 //special button 0
 if(CheckSpec0State()) special_byte |= BIT5HI;
 //special button 1
 if(CheckSpec1State()) special_byte |= BIT4HI;
 //water dispensor
 if(CheckWaterState()) special_byte |= 0x0F;

 return special_byte;
}

//Gets the readings from the speed and direction inputs and assembles
//byte1 to send the appropriate data to the boat
static unsigned char CreateNavByte(void)
{
 unsigned char speed_level;
 unsigned char direction_level;
 unsigned char byte1;

 //Read the sensors and store the values
 speed_level = GetSpeedLevel();
 direction_level = GetDirectionLevel();
 //Shift a nibble and put it in the byte
 byte1 = (direction_level << 4);
 //Add the lower nibble
 byte1 += speed_level;

 printf(" byte1: %h \r\n", byte1);
 return byte1;
}

//Returns a number between 0 and 15 (one nibble)
static unsigned char GetSpeedLevel(void)
{
 int temp;
 unsigned char level;

 temp = ADS12_ReadADPin(SPEED_PIN);

 //this should get us a number between 0 and 15
 level = temp/SPEED_CONVERSION + 1; //add one to correct for voltage levels

 //some test to make sure we are in the range
 if(level > 15)
 level = 15;
 if(level < 0)
 level = 0;

 printf(" speed level: %d \r\n", level);
 return level;
}

//Returns a number between 0 and 15 (one nibble)
static unsigned char GetDirectionLevel(void)
{
 int temp;
 unsigned char level;

 temp = ADS12_ReadADPin(DIRECTION_PIN);

 //this should get us a number between 0 and 15
 level = temp/DIRECTION_CONVERSION + 1; //add one to correct for voltage levels

 //some test to make sure we are in the range
 if(level > 15)
 level = 15;
 if(level < 0)
 level = 0;

 printf(" direction level: %d \r\n", level);
 return level;
}

//sets the goal servo to red, blue, or no team
static void SetBaseIndicator(unsigned char goal){
 if(goal == BASEA){
 SetServoPosition(8, ACTIVE_BASE_SERVO);
 printf("Setting base indicator servo to BASEA\r\n");
 }
 else if (goal == BASEB) {
 SetServoPosition(26, ACTIVE_BASE_SERVO);

 printf("Setting base indicator servo to BASEB\r\n");
 }
 else{ //no team
 SetServoPosition(17, ACTIVE_BASE_SERVO);
 printf("Setting base indicator servo to NONE\r\n");
 }
}

//sets the team indicator servo to the correct position, and zeros the other team's servo
static void SetTeamIndicator(unsigned char team){
 printf("Setting team indicator servo to team number: %d\r\n", team);
 if((team % 2) == 0){ //we are on the red team
 SetServoPosition(team, RED_BOAT_NUM_SERVO);
 SetServoPosition(0, BLUE_BOAT_NUM_SERVO);
 }
 else { //we are on the blue team
 SetServoPosition(team, BLUE_BOAT_NUM_SERVO);
 SetServoPosition(0, RED_BOAT_NUM_SERVO);
 }
}

static unsigned char CheckResetState(void){
 if(PTT & BIT3HI) return TRUE;
 else return FALSE;
}

static unsigned char CheckSpec0State(void){
 if(PTT & BIT0HI) return TRUE;
 else return FALSE;
}

static unsigned char CheckSpec1State(void){
 if(PTT & BIT1HI) return TRUE;
 else return FALSE;
}

static unsigned char CheckWaterState(void){
 //check for a change in tilt switch position from disengaged to engaged
 unsigned char switchState;
 if((PTT & BIT2HI) == 0)
 switchState = 0; //the current state of the mustard switch
 else
 switchState = 1;

 if(waterState != switchState){
 //reset the timer for continuing spray
 TMRS12_InitTimer(TMR_MUSTARD_SHAKE, MUSTARD_SHAKE_TIME);
 waterState = switchState;
 }

 if(TMRS12_IsTimerExpired(TMR_MUSTARD_SHAKE) == TMRS12_EXPIRED)
 return FALSE; //do not spray
 return TRUE; //spray away
}

//-------------------TEST FUNCTIONS---------------//

//Tests the basic helm xbee transmitting functionality
#ifdef HELM_TEST
void main(void)
{
 unsigned char byte0;
 unsigned char byte1;
 unsigned char byte2;

 printf("Being Helm Test! \r\n");
 while(TRUE)
 {
 //This is blocking code so we only transmit at 5Hz
 Wait(SEND_RATE);

 printf("Time to transmit! \r\n");
 //Get all the data we need to send a packet
 byte0 = NAVIGATION; //for testing we are sending navigation commands
 byte1 = CreateNavByte();
 byte2 = CreateSpecialByte(); //for testing we don't need the special
actions byte

 //Send218Data(TO_PARTNER, byte0, byte1, byte2);
 Send218Data(TO_BROADCAST, byte0, byte1, byte2);
 printf("Transmission complete! \r\n");

 }
}

#endif

//tests to make sure the servos on the helm are pointing to the correct places
#ifdef HELM_SERVO_TEST
void main(void)
{
 char i;
 InitAll();
 //Cycle through variable pulse lengths
 while(TRUE)
 {
 printf("Testing base indicator servo\r\n");
 SetBaseIndicator(NOTEAM);
 Wait(1500);
 SetBaseIndicator(BASEA);
 Wait(1500);
 SetBaseIndicator(BASEB);
 Wait(1500);

 for(i=0; i<=12; i++)
 {
 SetTeamIndicator(i);
 Wait(2000);
 }
 }
}

#endif

helpers.h

#ifndef HELPERS
#define HELPERS

//Function Prototypes
//timer functions
void Wait(int ticks);
void SetTimer(unsigned char timer, int ticks);
unsigned char CheckTimerExpired(unsigned char timer);
unsigned char CheckSendTimer(void);

//other helper functions
void PrintDecAsBin(unsigned char decimal);
void TestDecToBin(void);
void dec2bin(unsigned char decimal, unsigned char *binary);

#endif

helpers.c

//------------ helpers.c -----------//
//-- code courtesey of BurgerStache -//
//----------------------------------//

#include "headers.h"

//Waits for a number of milliseconds given by ticks (blocking)
void Wait(int ticks){
 //uses timer 0 for blocking WAIT, which is one of 8 possible timers
 TMRS12_InitTimer(TMR_WAIT,ticks);
 while(TMRS12_IsTimerExpired(0) != TMRS12_EXPIRED);
}

//sets a timer to count down
//input the length of the timer in MS and the ID of the timer
void SetTimer(unsigned char timer, int ticks){
 printf(" Timer %d set with ticks = %d\r\n", timer, ticks);
 TMRS12_InitTimer(timer,ticks);
}

//returns true if 200ms have passed, so it is time to send
unsigned char CheckSendTimer(void){
 //Initialize if this is the first time calling this function
 if((TMRS12_IsTimerActive(TMR_SEND) == FALSE) || (TMRS12_IsTimerExpired(TMR_SEND)
== TMRS12_EXPIRED))
 {
 TMRS12_InitTimer(TMR_SEND,SEND_RATE); //reset the timer if we are
returning true
 return TRUE; //return true if 200ms has elapsed since last call
 }
 return FALSE;
}

//returns true if the given timer is expired
unsigned char CheckTimerExpired(unsigned char timer){
 unsigned char timex = (TMRS12_IsTimerExpired(timer) == TMRS12_EXPIRED);
 if(timex == TRUE){
 printf(" Timer %d expired\r\n", timer);
 TMRS12_ClearTimerExpired(timer); //clear the timer so we don't keep
creating events
 }
 return timex;
}

//prints a decimal number as a binary string
void PrintDecAsBin(unsigned char decimal){
 char binary[80];
 dec2bin(decimal,binary);
 printf("%s", binary);
}

//Test function for our decimal to binary printing function
void TestDecToBin(void)
{
 long decimal;
 char binary[80];
 printf("\r\n Enter an integer value : ");
 scanf("%ld",&decimal);
 dec2bin(decimal,binary);
 printf("\r\n The binary value of %ld is %s \r\n",decimal,binary);
 getchar(); // trap enter
 getchar(); // wait
}

// accepts a positive decimal integer and returns a binary coded string
void dec2bin(unsigned char decimal, char *binary)
{
 int k = 0, n = 0;
 int neg_flag = 0;
 int remain;
 char temp[80];

 do //parse the number, starting with the LSB
 {
 remain = decimal % 2;

 // whittle down the decimal number
 decimal = decimal / 2;
 // converts digit 0 or 1 to character '0' or '1'
 temp[k++] = remain + '0';
 } while (decimal > 0);

 //fill the remaining bits with zeros
 while(k<8)
 {
 temp[k++] = '0';
 }

 // reverse the spelling
 while (k > 0)
 binary[n++] = temp[--k];

 binary[n] = 0; // end with NULL
}

ibutton.h

//----------- ibutton.c ------------//
//-- code courtesy of WeinerMeister-//
//----------------------------------//

//ibutton.c asks for byte #2 from the ibutton to get the serial number

#include "headers.h"

//Function prototyes

//public
void InitSPI(int isMaster);
unsigned char ReadIbutton(void);
unsigned char GetStoredSerialLSB(void);
unsigned char GetStoredSerialMSB(void);
void EraseStoredSerial(void);

//private
unsigned char RequestIbutton(void);
static unsigned char SPITx(unsigned char Tx);
static unsigned char SPIRx(void);
static unsigned int ReceiveIbuttonByte(void);

ibutton.c

//----------- ibutton.c ------------//
//-- code courtesy of WeinerMeister-//
//----------------------------------//

//ibutton.c is responsible for interfacing with the ibutton and mangaging the team
affiliation data structure
//asks for byte #2 from the ibutton to get the serial number
//loooks up a table of serial numbers and corresponding team colors

#include "headers.h"

//global variables
extern unsigned char GMyTeam;

//module variables
unsigned char MySerialLSB = 0;
unsigned char MySerialMSB = 0;

unsigned char SerialDataLow = 0;
unsigned char SerialDataHigh = 0;
unsigned char NewSerialFlag = 0;

///

// SPI FUNCTIONS //
///

//Initialize SPI
void InitSPI(int isMaster)
{
 //Initialize the SPI system
 SPICR1 |= _S12_SPE; //Enable SPI
 SPICR1 |= _S12_SPIE; //Enable SPI Interrupt

 switch (isMaster)
 {
 case SET_TO_MASTER:
 SPICR1 |= _S12_MSTR; //Make master
 printf("SPI mode changed to MASTER \n\r");
 break;
 case SET_TO_SLAVE:
 SPICR1 &= ~_S12_MSTR; //Make slave
 printf("SPI mode changed to SLAVE \n\r");
 break;
 default:
 printf("Error setting SPI mode! \n\r");
 break;
 }

 //Setup commands for the SPI control register
 SPICR1 |= _S12_CPOL; //Clock polarity: active LOW
 SPICR1 |= _S12_CPHA; //Clock phase: sample EVEN edges
 SPICR1 |= _S12_SSOE; //Slave select output enable
 SPICR2 |= _S12_MODFEN; //Mode Fault Enable
 //SPICR1 |= _S12_SPIE; //slave: receive reg has new data
 //SPICR1 |= _S12_SPTIE; //master: Tx buffer is empty

 //Set the baud rate to 11kHz
 /****** Baud rate = 24MHz / ((SPPR+1)*2^(SPR+1))*****/
 SPIBR |= _S12_SPPR2 | _S12_SPPR1 | _S12_SPPR0; //7
 SPIBR |= _S12_SPR2 | _S12_SPR1 | _S12_SPR0; //7

 EnableInterrupts;
}

//reads the serial number on the ibutton, which is the second byte
//if the serial number does exist in our table, set the team!
unsigned char ReadIbutton(void){

 //ignore first byte from the ibutton
 //receive the second byte and verify that it is a proper serial number
 //return the serial number if it is valid
 //also save this serial number as a module variable
 //MySerial = serial #
 //do a table lookup and set our team number accordingly
 GMyTeam = BLUE; //ex
 //return 0 if a bad serial number or no ibutton
 return 0;
}

//simply returns our stored serial number, returning zero if not affiliated with an
ibutton
unsigned char GetStoredSerialLSB(void){
 return MySerialLSB;
}

unsigned char GetStoredSerialMSB(void){
 return MySerialMSB;
}

//simply erases our stored serial number, replacing it with zero
void EraseStoredSerial(void){
 MySerialLSB = 0;
 MySerialMSB = 0;

}

//send character IBUTTON_RESET_BYTE to the ibutton, which signals the PIC to clear its
memory of which ibutton it met
static void ResetIbutton(void){
 //send a special code to the pic that signals it to clear its memory of past ibuttons
 SPITx(IBUTTON_RESET_BYTE);
}

//Transmits a character to the SPI data register, then procedes to transmit it
automatically
//Returns SUCCESS if transmitted successfully
//Returns FAILURE if another transfer is in progress
static unsigned char SPITx(unsigned char Tx){
 unsigned char dummy = 0; //dummy variable for reading SPISR. Simply by reading a
variable in, it is cleared.

 //printf("Ready, writing data...\n\r");
 //Transmit
 if((SPISR & _S12_SPTEF) == 0) //This line will fail if the slave is not
 return FAILURE;
 //clear the SPIF flag, which is the received data flag. May not be necessary
 dummy = SPISR;
 dummy = SPIDR;
 //clear the SPTEF flag and writes data to SPIDR
 dummy = SPISR;
 SPIDR = Tx;
 //printf("Done transmitting...\n\r");

 return SUCCESS;
}

//Returns a character that is received from the E128 SPI data register
static unsigned char SPIRx(void){
 unsigned char dummy = 0;
 unsigned char Rx; //data that is to be received

 //Receive
 //printf("Want to read from slave...\n\r");
 while((SPISR & _S12_SPTEF) == 0); //BLOCKING CODE: will wait to receive data
 //while((SPISR & _S12_SPIF) == 0); slave uses SPIF usually, master usues SPTEF
usually. But both are reset.

 //Clears the SPIF flag
 dummy = SPISR;
 dummy = SPIDR;

 //Clears SPTEF flag and transmits dummy data
 dummy = SPISR;
 SPIDR = 0; //transmits a zero
 while(!(SPISR & _S12_SPTEF)); //also blocking code. Necessary, but may split into
two functions for project.
 //while((SPISR & _S12_SPIF) == 0);

 //Read what is received and return it in Rx
 dummy = SPISR;
 Rx = SPIDR;

 //printf("SPIRx sees: %d\n\r", Rx);
 return Rx;
}

unsigned char RequestIbutton(void)
{ // This sets PTP2 high to signal the PIC to read an iButton.
 // An ISR reads the data in when it is received.
 // When both bytes have been received and the NewSerialFlag is set
 // this function sets the received data into the MySerial variables
 // and returns TRUE.

 DDRP |= BIT2HI;
 PTP |= BIT2HI;

 if(NewSerialFlag) {
 PTP &= BIT2LO;
 MySerialLSB = SerialDataLow;
 MySerialMSB = SerialDataHigh;
 NewSerialFlag = 0; //clear flag
 printf("Ibutton requested = %x %x \r\n", SerialDataHigh, SerialDataLow);

 return TRUE;
 }

 return FALSE;

}

/*// OLD, BLOCKING WAY TO receive IButton byte
static unsigned int ReceiveIbuttonByte(void)
{
 char dummy;

 PTP |= BIT2HI;

 while(!(SPISR & _S12_SPIF)); // BLOCKING CODE!!! ************
 dummy = SPISR;
 SerialDataLow = SPIDR;

 while(!(SPISR & _S12_SPIF)); // BLOCKING CODE!!! ************
 dummy = SPISR;
 SerialDataHigh = SPIDR;

 SerialDataHigh = (SerialDataHigh << 8) + SerialDataLow;

 PTP &= BIT2LO;

 return SerialDataHigh;

}*/

void interrupt _Vec_spi ReadSPI (void)
{
 static unsigned char byte_number = 1;
 unsigned char status;
 unsigned char new_data;

 //THOU SHALT NOT USE PRINTF IN AN SPI INTERRUPT ROUTINE!!
 //printf("\n\rR");

 status = SPISR;
 new_data = SPIDR; //Read data (this also clears the flag)

 if((byte_number == 1) && (NewSerialFlag != 1)) //
 {
 //printf("1\n\r"); //"D" = we have data
 SerialDataLow = new_data;
 byte_number = 2;
 }
 else if((byte_number == 2) && (NewSerialFlag != 1)) //
 {
 //printf("2\n\r"); //"D" = we have data
 SerialDataHigh = new_data;
 byte_number = 1;
 NewSerialFlag = 1;
 }
} // End of SPI ISR

/*------------- TESTING FUNCTIONS -------------------*/

//the main function is used for testing only
#ifdef IBUTTON_SPI_TEST
void main(void)
{
 unsigned int iButton = 0;
 unsigned char dummy;

 printf("Beginning SPI test for E128!\n\r");

 //Initialize various functionalities
 InitSPI(SET_TO_SLAVE);

 //Init PP2 to output (to tell pic to send the serial number)
 DDRP |= BIT2HI;
 PTP &= BIT2LO;

 while(TRUE)
 {

 if(kbhit() != 0)
 {
 dummy = getchar(); //this makes it not go into a weird loop

 printf("Beginning to get iButton");
 while(!(RequestIbutton()));

 printf("Byte 1 is: %X \n\r", MySerialLSB);
 printf("Byte 2 is: %X \n\r", MySerialMSB);

 }
 }

 return;
}
#endif

main.h

#ifndef MAIN
#define MAIN

//Function prototypes
void InitAll(void);
void InitBoat(void);
void InitHelm(void);
unsigned char CheckSerialMatch(void);
void SimulateAdmiral(unsigned char KeyStroke);
void PrintState(int state, int event);
void SetTeam(unsigned char teamNum);

#endif

main.c

//----------- main.c ---------------//
//-- code courtesy of WeinerMeister-//
//----------------------------------//

#include "headers.h"

//global variables
unsigned char GMyTeam;

#ifdef HELM_MAIN
 unsigned char GWhoAmI = IAMHELM; //IAMHELM or IAMBOAT
#else
 unsigned char GWhoAmI = IAMBOAT; //IAMHELM or IAMBOAT

#endif

//module variables

#ifdef BOAT_MAIN
void main(void){
 //Initialize all variables
 InitAll();
 //start the master state machine initialization
 printf("Starting boat state machine\r\n");
 StartBoatSM();
 //check for and handle events
 while(TRUE){
 RunBoatSM(CheckBoatEvents());
 }
}
#endif

#ifdef HELM_MAIN
void main(void){
 //Initialize all variables
 InitAll();
 //start the master state machine initialization
 printf("Starting helm state machine\r\n");
 StartHelmSM();
 //check for and handle events
 while(TRUE){
 RunHelmSM(CheckHelmEvents());
 }
}
#endif

//InitAll does any initialization that is identical for the boat and the helm
//then it calls the specific boat and helm init procedures
void InitAll(void) {
 printf("\r\nWelcome to me.\r\n");
 printf("Initializing all.\r\n");

 //Initialize timer
 TMRS12_Init(TMRS12_RATE_1MS);

 //call inferior initialization functions
 InitSPI(SET_TO_SLAVE);
 InitSCI();//for xbee

 //Init PP2 to output (to tell pic to send the serial number)
 DDRP |= BIT2HI;
 PTP &= BIT2LO;

 //team affiliation
 GMyTeam = NOTEAM;

 //Check and print battery voltages
 //CheckBattVoltages();

 //Do specialized init procedures for boat and helm
 if(GWhoAmI == IAMBOAT){ //check the boat SM if we're a boat
 printf("I am the boat.\r\n");
 InitBoat();
 }else{ //I am a helm
 printf("I am the helm.\r\n");
 InitHelm();
 }
}

//Init boat ports, etc.
void InitBoat(void){
 printf("Initializing boat.\r\n");
 InitPWM(); //Initialize PWM for boat propellors

 //Set port directions
 DDRT = BOAT_PTT_INIT;
 DDRU = BOAT_PTU_INIT;

 //Set inital pin values
 PTT = 0;
 PTU = 0;

 //Set motors to begin at a stop
 Stop();
}

//Init helm ports, etc.
void InitHelm(void){
 printf("Initializing helm.\r\n");

 InitServoPWM(); //for silly helm dials

 //Set port directions
 DDRT = HELM_PTT_INIT;
 DDRU = HELM_PTU_INIT;

 //Set inital pin values
 PTT = 0;
 PTU = 0;

 //AD
 ADS12_Init(HELM_PTAD_INIT);

 //Initializes AD ports
 if(ADS12_Init(BOAT_PTAD_INIT) != ADS12_OK)
 printf("ERR: AD Initialization unsuccessful\r\n");

}

//compares the serial number incoming from the xbee and the ibutton serial
//if they are the same (and non-zero), then return TRUE
//call this only when you know that an ibutton has been read with RequestIbutton
unsigned char CheckSerialMatch(void){
 //return true if both bytes are matched and non-zero
 return ((GetXbeeByte1() == GetStoredSerialMSB()) //MSB
it matched
 && (GetXbeeByte2() == GetStoredSerialLSB()) //LSB
is matched
 && ((GetXbeeByte1() != 0) || (GetXbeeByte2() != 0))); //at least one byte
is non-zero
}

//sets our team affiliation and appropriate lights
void SetTeam(unsigned char teamNum){

 printf("Team number = %d\r\n",teamNum);
 //if we have a matched ibutton, then set our team affiliation
 if((teamNum %2) == 0){//even teams are BLUE
 printf("We're on the BLUE team\r\n");
 PTT |= BIT7HI; //blue team on and red team off
 PTT &= BIT6LO;
 GMyTeam = BLUE;
 }
 else //odd teams are RED
 {
 printf("We're on the RED team\r\n");
 PTT |= BIT6HI; //red team on and blue team off
 PTT &= BIT7LO;
 GMyTeam = RED;
 }
}

//takes a keystroke (numbers 1 through 8) and sends the corresponding admiral command to
our partner
void SimulateAdmiral(unsigned char KeyStroke){

 unsigned char sendByte = 0;
 switch(toupper(KeyStroke)){
 case '1' :
 sendByte = STAND_DOWN;
 printf("Admiral says to STAND_DOWN\r\n");
 break;
 case '2' :
 sendByte = START_GAME;
 printf("Admiral says to START_GAME\r\n");
 break;
 case '3' :
 sendByte = END_GAME;
 printf("Admiral says to END_GAME\r\n");
 break;
 case '4' :
 sendByte = BLUE_GOAL;
 printf("Admiral says to BLUE_GOAL\r\n");
 break;
 case '5' :
 sendByte = RED_GOAL;
 printf("Admiral says to RED_GOAL\r\n");
 break;
 case '6' :
 sendByte = SOFT_RESET;
 printf("Admiral says to SOFT_RESET\r\n");
 break;
 case '7' :
 sendByte = HARD_RESET;
 printf("Admiral says to HARD_RESET\r\n");
 break;
 case '8' :
 sendByte = ADMIRAL_PING;
 printf("Admiral says to ADMIRAL_PING\r\n");
 break;
 }
 //send an admiral command to our partner
 if(sendByte != 0)
 Send218Data(TO_PARTNER, ADMIRAL, 0x00, sendByte);
}

//------------ DEBUGGING FUNCTIONS -----------------//

void PrintState(int state, int event){

 printf("\r\n-----State Machine-----\r\n");
 printf("CurrentState = ");
 if(GWhoAmI == IAMBOAT){
 //boat
 switch(state) {
 case BST_WAITING_FOR_IBUTTON : printf("BST_WAITING_FOR_IBUTTON"); break;
 case BST_LOOKING_FOR_HELM : printf("BST_LOOKING_FOR_HELM"); break;
 case BST_PLAYING_GAME : printf("BST_PLAYING_GAME"); break;
 case BST_STANDING_DOWN : printf("BST_STANDING_DOWN"); break;
 }
 }
 else{
 //helm
 switch(state) {
 case HST_WAITING_FOR_IBUTTON : printf("HST_WAITING_FOR_IBUTTON"); break;
 case HST_LOOKING_FOR_BOAT : printf("HST_LOOKING_FOR_BOAT"); break;
 case HST_WAITING_FOR_GAME_START : printf("HST_WAITING_FOR_GAME_START");
break;
 case HST_PLAYING_GAME : printf("HST_PLAYING_GAME"); break;
 case HST_CRUISING_POST_GAME : printf("HST_CRUISING_POST_GAME"); break;
 case HST_STANDING_DOWN : printf("HST_STANDING_DOWN"); break;
 }
 }
 printf("\r\nCurrentEvent = ");
 switch(event) {
 case EV_NO_EVENT : printf("EV_NO_EVENT"); break;
 case EV_ENTRY : printf("EV_ENTRY"); break;

 case EV_EXIT : printf("EV_EXIT"); break;
 case EV_ERROR : printf("EV_ERROR"); break;
 case EV_NO_ACTION : printf("EV_NO_ACTION"); break;
 case EV_IBUTTON : printf("EV_IBUTTON"); break;
 case EV_STAND_DOWN : printf("EV_STAND_DOWN"); break;
 case EV_GAME_START : printf("EV_GAME_START"); break;
 case EV_GAME_STOP : printf("EV_GAME_STOP"); break;
 case EV_HARD_RESET : printf("EV_HARD_RESET"); break;
 case EV_TMR_SEND : printf("EV_TMR_SEND"); break;
 case EV_TMR_LOST_COMM: printf("EV_TMR_LOST_COMM"); break;
 case EV_MATCHED : printf("EV_MATCHED"); break;
 case EV_PLAY_ON : printf("EV_PLAY_ON"); break;
 case EV_NEXT : printf("EV_NEXT"); break;
 case EV_NEW_XBEE : printf("EV_NEW_XBEE"); break;

 }
 printf("\r\n");
}

motor.h

#ifndef MOTOR
#define MOTOR

//FUNCTION PROTOTYPES
// Public Function Prototypes
void InitPWM(void);
void SetMotor(char motorID, char direction, char duty);
void Stop(void); //stops both motors

#endif

motor.c

//----------- motor.c ---------------//
//-- code courtesy of WeinerMeister-//
//----------------------------------//

//motor.c contains any code that is specific to the boat, including propeller control

#include "headers.h"

//Initializes the PWM subystem on the E128
void InitPWM(void){
 //Initialize the clock
 PWMSCLA = POSTSCALER; //scale the A clock by / (3*2)
 PWMPRCLK |= 1; //use clock A with M/4 scalar (write to bit 1)

 //Initialize PWM for motor 1 (T0)
 PWME |= BIT0HI; //enable PWM on bit 0
 MODRR |= BIT0HI; //map T0 to PWM
 PWMCLK |= BIT0HI; //use SA (scaled clock)
 PWMPOL |= BIT0HI; //select the PWM polarity. 1 = output initially high
 PWMPER0 = MOTOR_PWM_PERIOD; //contains the count of the total number of cycles on
clock A or SA that will constitute the total period for PWM channel 0
 PWMDTY0 = DEFAULT_MOTOR_DUTY; //contains the count of the total number of cycles
on either clock A or SA that will constitute the active period for PWM channel 0

 //Initialize PWM for motor 2 (T1)
 PWME |= BIT1HI; //enable PWM on bit 1
 MODRR |= BIT1HI; //map T1 to PWM
 PWMCLK |= BIT1HI; //use SA (scaled clock)
 PWMPOL |= BIT1HI; //select the PWM polarity. 1 = output initially high
 PWMPER1 = MOTOR_PWM_PERIOD; //contains the count of the total number of cycles on
clock A or SA that will constitute the total period for PWM channel 0
 PWMDTY1 = DEFAULT_MOTOR_DUTY; //contains the count of the total number of cycles
on either clock A or SA that will constitute the active period for PWM channel 0
}

//Sets the duty cycle of the given motor and sets the direction output
//motorID = LEFT or RIGHT
//direction = FORWARD or BACKWARD
//duty = 0 to 100
void SetMotor(char motorID, char direction, char duty){
 //calculate the number of clock ticks to give powers to the motor
 unsigned int dutyTicks;
 dutyTicks = (MOTOR_PWM_PERIOD * duty)/100;

 //check to make sure the parameters are in bounds
 if(duty < 0 || duty > 100){
 printf("ERR: duty out of bounds in SetMotor \r\n");
 return; //failure
 }
 if(!((direction == FORWARD) || (direction == BACKWARD))){
 printf("ERR: direction must be forward or backward \r\n");
 return; //failure
 }
 if(!((motorID == R_MOTOR) || (motorID == L_MOTOR) || (motorID == BOTH_MOTORS))){
 printf("ERR: unknown motorID given \r\n");
 return; //failure
 }

 //Set the direction and PWM based on which motor and which direction are selcted
 if((motorID == L_MOTOR)||(motorID == BOTH_MOTORS)){
 if(direction == FORWARD){
 PTT |= BIT5HI; //set direction pin output
 PWMDTY1 = (char)(MOTOR_PWM_PERIOD-dutyTicks); //set motor PWM
registers as prescribed by the PWM subsystem. Invert duty when direction pin is high.
 //printf("I'm setting left motor duty to: %d (INVERSE)
\n\r",dutyTicks);
 }else{
 PTT &= BIT5LO;
 PWMDTY1 = (char)dutyTicks;
 //printf("I'm setting left motor duty to: %d \n\r",dutyTicks);
 }
 }
 if((motorID == R_MOTOR) || (motorID == BOTH_MOTORS)){
 //set direction pin output
 if(direction == FORWARD){
 PTT |= BIT4HI;
 PWMDTY0 = (char)(MOTOR_PWM_PERIOD-dutyTicks); //set motor PWM
registers as prescribed by the PWM subsystem. Invert duty when direction pin is high.
 //printf("I'm setting right motor duty to: %d (INVERSE)
\n\r",dutyTicks);
 }else{
 PTT &= BIT4LO;
 PWMDTY0 = (char)dutyTicks;
 //printf("I'm setting right motor duty to: %d \n\r",dutyTicks);
 }
 }
}

//stop the boat in its tracks
void Stop(void){
 //printf(" Now stopping\r\n");
 SetMotor(BOTH_MOTORS, FORWARD, 0);
}

servo.h

#ifndef SERVO
#define SERVO

//FUNCTION PROTOTYPES
void InitServoPWM(void);
void SetServoPosition(char position, char servo_id);

#endif SERVO

servo.c

//----------- servo.c -------------//
//-- code courtesy of BurgerStache --//
//-------------------////-----------//

//Standard Libraries
#include "headers.h"

//Initializes the PWM subystem for servos on the HELM
void InitServoPWM(void)
{
 //Initialize the clock
 PWMSCLA = POSTSCALER_A; //scale the A clock by / (2*75)
 PWMPRCLK |= 0x04; //use clock A with M/16 scalar

 //Initialize PWM for servo
 PWME |= (BIT0HI | BIT1HI | BIT4HI); //enable PWM on bits 0, 1, 4
 MODRR |= (BIT0HI | BIT1HI | BIT4HI); //map PWM to port U on 0, 1, 4
 PWMCLK |= (BIT0HI | BIT1HI | BIT4HI); //use SA (scaled clock)
 PWMPOL |= (BIT0HI | BIT1HI | BIT4HI); //select the PWM polarity. 1 = output
initially high
 PWMCAE |= (BIT0HI | BIT1HI | BIT4HI); //center align the PWM signal
 //Set the period for all three PWM channels
 PWMPER0 = SERVO_PWM_PERIOD;
 PWMPER1 = SERVO_PWM_PERIOD;
 PWMPER4 = SERVO_PWM_PERIOD;
 //Set the initial duty cycle for all three PWM channels
 PWMDTY0 = SERVO_INIT_DUTY;
 PWMDTY1 = SERVO_INIT_DUTY;
 PWMDTY4 = SERVO_INIT_DUTY; //contains the count of the total number of cycles
on either clock A or SA that will constitute the active period for PWM channel 0
}

//Public function to allow servos to be positioned to a positions 0 through 19
void SetServoPosition(char team, char servo_id)
{
 char position;

 //Scale the position input to a duty cycle and check to make sure it is not too high
 if(servo_id == ACTIVE_BASE_SERVO)
 position = team;
 else if(servo_id == RED_BOAT_NUM_SERVO)
 switch(team) {
 case 0:
 position = 5;
 break;

 case 12:
 position = 9;
 break;

 case 10:
 position = 13;
 break;

 case 8:
 position = 17;
 break;

 case 6:
 position = 21;
 break;

 case 4:
 position = 24;
 break;

 case 2:
 position = 27;
 break;

 }
 else if(servo_id == BLUE_BOAT_NUM_SERVO)
 switch(team) {
 case 11:
 position = 6;
 break;

 case 9:
 position = 9;
 break;

 case 7:
 position = 12;
 break;

 case 5:
 position = 15;
 break;

 case 3:
 position = 19;
 break;

 case 1:
 position = 22;
 break;

 case 0:
 position = 26;
 break;
 }

 if(position > SERVO_MAX_DUTY)
 position = SERVO_MAX_DUTY;

 printf("Setting servo id %d to position %d, team %d\r\n", servo_id, position, team);

 //Update the appropriate PWM duty
 if(servo_id == BLUE_BOAT_NUM_SERVO)
 PWMDTY0 = position;
 if(servo_id == RED_BOAT_NUM_SERVO)
 PWMDTY1 = position;
 if(servo_id == ACTIVE_BASE_SERVO)
 PWMDTY4 = position;
}

//------------------Test Routine----------------------//
#ifdef SERVO_TEST

void main(void)
{
 char i;
 InitAll();

 //Cycle through variable pulse lengths
 while(TRUE)
 {

 for(i=0; i<30; i++)
 {
 //SetServoPosition(i, ACTIVE_BASE_SERVO);
 //SetServoPosition(i, RED_BOAT_NUM_SERVO);
 SetServoPosition(i, BLUE_BOAT_NUM_SERVO);
 printf("Position: %d \r\n", i);
 Wait(1000);
 }
 }
}

#endif

xbee.h

#ifndef xbee
#define xbee

// Function Prototypes
//public functions
void InitSCI (void);
void Send218Data(unsigned char destination, unsigned char byte0, unsigned char byte1,
unsigned char byte2);
unsigned char CheckXbeeRX(void);
unsigned char GetXbeeByte0(void);
unsigned char GetXbeeByte1(void);
unsigned char GetXbeeByte2(void);
unsigned char GetTeamNumber(void);
void ImprintPartner(void);
void SimulateIbutton(unsigned char us);

//private functions
static void CheckPingBack(void);
static void ResetChecksum(void);
static unsigned char GetChecksum(void);
static void SendData(unsigned char data);
static void ProcessNewData(void);

#endif

xbee.c

// xBee preliminary testing
//
// Team Burgerstache
// Created May 7, 2008
//

#include "headers.h"

//global variables
extern unsigned char GWhoAmI;

//module variables
static unsigned char CheckSum;
static unsigned char RXDataBuffer[XBEE_MESSAGE_SIZE]; //12 bytes to match 218 comm
standard, plus one extra for good luck
static unsigned char RXDataBufferIndex = 0;
static unsigned char RXFlag = FALSE;

static unsigned char RXSourceMSB = 0; //Byte 5
static unsigned char RXSourceLSB = 0; //Byte 6

static unsigned char RXbyte0 = 0; //Byte 9
static unsigned char RXbyte1 = 0; //Byte 10
static unsigned char RXbyte2 = 0; //Byte 11

static unsigned char MyPartnerDestMSB = 0x00;
static unsigned char MyPartnerDestLSB = 0x00;

/*
//Q: what if packets are dropped? Are we getting them in order? WTF?
*/

// Initialization
void InitSCI (void)
{
 printf("Initializing SCI.\r\n");
 // CONFIGURE SCI
 SCI1BDH = 0x00; // write SCI1BDH - want it to be 0
 SCI1BDL = BAUD_BITS; // write SCI1BDL - this is 156
 SCI1CR1 = 0x00; // write SCI1CR1 - clear register (all zeros) for
proper config

 SCI1CR2 |= BIT5HI; // bit 5 for receive interrupt
 SCI1CR2 |= BIT3HI | BIT2HI; // bit 2 and 3 for tx/rx enable
 SCI1CR2 |= BIT4HI; // bit 4 for idle line interrupt

 //Port S
 DDRS &= BIT2LO; //Input
 DDRS |= BIT3HI; // Output... not sure if we need this and should do a master
initialize elsewhere

 // INTERRUPTS
 EnableInterrupts;
}

//Polling function that checks the xbee for new data
//if there is new data, it is processed and put into module variables
//returns true if new data was intercepted, false otherwise
unsigned char CheckXbeeRX(void) {
 //printf("Checking for xbee data...\r\n");
 if(RXFlag == TRUE)
 {
 RXFlag = FALSE;
 ProcessNewData(); //put data into module variables and print them out
 CheckPingBack(); //ping the admiral back if we need to do so

 //printf("Data arrival on xbee complete.\r\n");
 return TRUE;
 }
 else
 //printf(" No new data received! \n\r");

 return FALSE;
}

//if the admiral pings us, ping it back
static void CheckPingBack(void){
 unsigned char byte0, byte1, byte2;
 //CHECK FOR SIGNEDNESS!!!!!!!
 /*
 printf("Checking to see if we should ping back to admiral... \r\n");
 printf("RXbyte0 = %d \r\n",RXbyte0);
 printf("ADMIRAL = %d \r\n",ADMIRAL);
 printf("RXbyte2 = %d \r\n",RXbyte2);
 printf("ADMIRAL_PING = %d \r\n",ADMIRAL_PING);
 */
 if((RXbyte0 == ADMIRAL) && (RXbyte2 == ADMIRAL_PING)){

 byte0 = PING_RESPONSE;
 if(GWhoAmI == IAMBOAT){ //check the boat SM if we're a boat
 if(QueryBoatSM() == BST_WAITING_FOR_IBUTTON)
 byte1 = 0x01; //if waiting for iButton
 else if(QueryBoatSM() == BST_LOOKING_FOR_HELM)
 byte1 = 0x02; // if iButton read and waiting for pairing
 else
 byte1 = 0x04; //if paired
 }else{ //I am a helm
 if(QueryHelmSM() == HST_WAITING_FOR_IBUTTON)
 byte1 = 0x01; //if waiting for iButton
 else if(QueryHelmSM() == HST_LOOKING_FOR_BOAT)
 byte1 = 0x02; // if iButton read and waiting for pairing
 else
 byte1 = 0x04; //if paired
 }
 byte2 = MyPartnerDestLSB; //default is 0x00

 printf("Sending admiral response to ping \r\n");
 Send218Data(TO_ADMIRAL,byte0, byte1, byte2); //do the pingback!
 }
}

//update partner because we did the ibutton dance
//the source of the last message we processed is now our partner

void ImprintPartner(void){
 printf("Imprint Partner \r\n");
 MyPartnerDestMSB = RXSourceMSB;
 MyPartnerDestLSB = RXSourceLSB;
}

//returns the team number, which is based on the lower nibble of the boat's address
//returns 0 if the team is not yet chosen (partner not yet imprinted)
unsigned char GetTeamNumber(void){
 return MyPartnerDestLSB;
}

//simulates an ibutton read, pairing us with our own helm (or boat)
void SimulateIbutton(unsigned char us) {
 printf("Simulate Ibutton \r\n");
 if(us == IAMBOAT) {
 MyPartnerDestMSB = 0xBC;
 MyPartnerDestLSB = 0x04;
 }else{ //we are helm
 MyPartnerDestMSB = 0xAF;
 MyPartnerDestLSB = 0x04;
 }
}

//header
unsigned char GetXbeeByte0(void){
 return RXbyte0;
}

//nav
unsigned char GetXbeeByte1(void){
 return RXbyte1;
}

//parameters
unsigned char GetXbeeByte2(void){
 return RXbyte2;
}

//Transmit command
//header, navigation, special
//If broadcast is true send a broadcast, otherwise send it to our partner
void Send218Data(unsigned char destination, unsigned char byte0, unsigned char byte1,
unsigned char byte2){
 unsigned char destMSB, destLSB;
 unsigned char checksum;
 unsigned char options = 0x00;

 printf("Sending data...\r\n");
 //send the damn data
 SendData(START_BYTE); //start delimiter
 SendData(LENGTH_MSB); //length MSB
 SendData(LENGTH_LSB); //length LSB
 ResetChecksum();
 SendData(API_TX); //API identifier (TX request 16-bit)
 SendData(FRAME_ID); //Frame ID
 //send destination bytes according to desired dest type
 if(destination == TO_BROADCAST){
 destMSB=0xFF; //Destination address
 destLSB=0xFF;
 }
 else if (destination == TO_ADMIRAL){
 destMSB=ADMIRAL_ADDRESS_MSB;
 destLSB=ADMIRAL_ADDRESS_LSB;
 }
 else {
 destMSB=MyPartnerDestMSB;
 destLSB=MyPartnerDestLSB;
 }
 //send destination data
 SendData(destMSB);

 SendData(destLSB);

 SendData(options); //options (was 0x01 for testing), it is now initialized as a
variable above
 SendData(byte0); //output data 1
 SendData(byte1); //output data 2
 SendData(byte2); //output data 3

 checksum = GetChecksum();
 SendData(checksum); //checksum

 //print the data
 printf("Sending byte 1: %x Start Byte \r\n", START_BYTE);
 printf("Sending byte 2: %x Length MSB \r\n", LENGTH_MSB);
 printf("Sending byte 3: %x Length LSB \r\n", LENGTH_LSB);
 printf("Sending byte 4: %x API_TX \r\n", API_TX);
 printf("Sending byte 5: %x FRAME_ID \r\n", FRAME_ID);
 printf("Sending byte 6: %x Dest MSB \r\n", destMSB);
 printf("Sending byte 7: %x Dest LSB \r\n", destLSB);
 printf("Sending byte 8: %x Options \r\n", options);
 printf("Sending byte 9: %x Data Byte 0 \r\n", byte0);
 printf("Sending byte 10: %x Data Byte 1 \r\n", byte1);
 printf("Sending byte 11: %x Data Byte 2 \r\n", byte2);
 printf("Sending byte 12: %x Checksum \r\n", checksum);

 printf("Sending complete.\r\n");
}

// Interrupt routine for when we get new data
// take packets from the xbee and save them into an array
// then sets a flag high that tells us there is new xbee data available for processing
void interrupt _Vec_sci1 ReadData (void)
{
 unsigned char status;
 unsigned char new_data;

 //printf("R");

 status = SCI1SR1;
 new_data = SCI1DRL; //Read data (this also clears the flag)

 if(status & BIT5HI) //Check RDRF to see if we have good data
 {
 //printf("D"); //"D" = we have data
 // Process new data by putting it into the buffer array
 RXDataBuffer[RXDataBufferIndex] = new_data;
 RXDataBufferIndex++;

 if(RXDataBufferIndex >= (XBEE_MESSAGE_SIZE))
 {
 RXDataBufferIndex = 0; //reset index
 RXFlag = TRUE; //we have new data!
 //printf("F\n\r"); //"F" = buffer is full
 }

 }

 if(status & BIT4HI) //reset the index if there is an idle
 {
 //printf("I"); //"I" = line is idle
 RXDataBufferIndex = 0; //reset index
 }
}

// process new data
static void ProcessNewData(void)
{
 unsigned char index = 0;
 unsigned char binary[9];

 //printf("Processing message now... \r\n");

 //Store the values of the important bytes in module variables
 RXSourceMSB = RXDataBuffer[4];
 RXSourceLSB = RXDataBuffer[5];

 RXbyte0 = RXDataBuffer[8];
 RXbyte1 = RXDataBuffer[9];
 RXbyte2 = RXDataBuffer[10];

/*
 //Prints out any data that arrives
 while(index < XBEE_MESSAGE_SIZE)
 {
 //dec2bin(RXDataBuffer[index],binary); //convert the data to binary for
debugging
 printf("Processing byte %d: %x ", (index + 1), (RXDataBuffer[index]));
 switch(index+1){ //switch based on what byte we read
 case 1: printf("Start Delimiter"); break;
 case 2: printf("Length MSB"); break;
 case 3: printf("Length LSB"); break;
 case 4: printf("API Identifier"); break;
 case 5: printf("Source Addr MSB"); break;
 case 6: printf("Source Addr LSB"); break;
 case 7: printf("Signal strength"); break;
 case 8: printf("Options"); break;
 case 9: printf("Data Byte 0 - Header"); break;
 case 10: printf("Data Byte 1"); break;
 case 11: printf("Data Byte 2"); break;
 case 12: printf("Checksum"); break;
 }

 printf("\r\n");

 index++;
 }

 printf("Processing complete! \r\n");
*/
}

// Sends a byte of data over SCI
static void SendData(unsigned char data)
{
 //char binary[80];
 unsigned char dummy = 0;
 //dec2bin(data,binary); //convert the data to binary for debugging

 while((SCI1SR1 &= BIT6HI) == 0); //TC = transmit complete (stall until this is 1)
 //do nada

 dummy = SCI1SR1; //clears TDRE by reading sci
 SCI1DRL = data; //actually sends

 //add data to our checksum
 CheckSum += data;

 //print out the data we're sending (in binary)
 //printf("Sending data: %s \r\n", binary);

}

//this function resets our checksum
static void ResetChecksum(void){
 CheckSum = 0;
}

//get the current checksum value, and print it
static unsigned char GetChecksum(void){
 unsigned char FinalCheckSum;
 FinalCheckSum = (0xFF - CheckSum);

 //printf("FinalCheckSum = %x\r\n", FinalCheckSum);
 return FinalCheckSum;
}

//--------- TEST CODE -------------

//checks for key presses, then broadcasts a message (different depending on key= s or b)
//uses interrupt-driven read, which is processed when 'r' is pressed
#ifdef XBEE_TEST
void main (void)
{
 unsigned char keyInput;

 printf("XBee Test Code! (press any key to cont) \r\n");
 printf("press 's' to send, 'r' to receive \r\n");

 //Initialize all of our ports and SCI registers
 InitAll();

 while(TRUE){
 if(kbhit() != 0){
 keyInput = getchar(); //this makes it not go into a weird loop

 //send test
 if(keyInput == 's')
 Send218Data(TO_BROADCAST, 0xAA, 0xAA, 0xAA);
 if(keyInput == 'b')
 Send218Data(TO_BROADCAST, 0xBB, 0xBB, 0xBB);
 //receive test
 if(keyInput == 'r')
 CheckXbeeRX();
 }

 //printf("still looping\r\n");
 }
}
#endif

helpers.h

#ifndef HELPERS
#define HELPERS

//Function Prototypes
//timer functions
void Wait(int ticks);
void SetTimer(unsigned char timer, int ticks);
unsigned char CheckTimerExpired(unsigned char timer);
unsigned char CheckSendTimer(void);

//other helper functions
void PrintDecAsBin(unsigned char decimal);
void TestDecToBin(void);
void dec2bin(unsigned char decimal, unsigned char *binary);

#endif

PIC Code

ibutton.asm

; ME218C Project - iButton Code

; Adam Leeper

; 5/08/08

; GENERAL DESCRIPTION:

; this code reads the iButton, communicates its value

; to the HC12, and also controls the iButton reader's

; LED light and a buzzer which sounds to indicate a successful

; read. Error checking takes place in the HC12.

; admininstrative stuff:

 list P=PIC16F690
 #include "p16F690.inc"
 __config (_CP_OFF & _WDT_OFF & _PWRTE_ON & _HS_OSC)

; variable definitions:

DCount EQU 0x2D
ACount EQU 0x2F
TCount EQU 0x2C
BitVal EQU 0x2E
TempByte EQU 0x20
Byte1 EQU 0x21
Byte2 EQU 0x22
Byte3 EQU 0x23
Byte4 EQU 0x24
Byte5 EQU 0x25
Byte6 EQU 0x26
Byte7 EQU 0x27
Byte8 EQU 0x28

; port definitions:
EnablePort EQU PORTC
EnablePin EQU 0 ; signal from the Master that an iButton should be read

ButtonPort EQU PORTA
ButtonPin EQU 0 ; the open-drain port used for the iButton reader
Carry EQU 0

ClockPort EQU PORTC ; the clock pin for the synchronous communiction
ClockPin EQU 1 ; of iButton data to the HC12

InfoPort EQU PORTC ; the info pin for the same...
InfoPin EQU 2

LEDPort EQU PORTA ; controls the reader's LED
LEDPin EQU 2
LEDSink EQU 1

BuzzPort EQU PORTC ; controls a buzzer
BuzzPin EQU 4

ConfigA equ b'11111000' ; Config RA0 as output
ConfigB equ b'11111111' ; Config placeholder
ConfigC equ b'11111001' ; Config RC1-RC4 as outputs

SDI equ 4 ; SDI
SCK equ 6 ; SCK
SS equ 6 ; SS
SDO equ 7 ; SDO

#define iButton ButtonPort,ButtonPin
#define iLED LEDPort,LEDPin
#define LED_ON BSF iLED
#define LED_OFF BCF iLED
#define SS_LOW BCF PORTC,SS
#define SS_HIGH BSF PORTC,SS

 ORG 0

 GOTO Main
 ORG 5

Main:
 CLRF PORTA
 CLRF PORTB
 CLRF PORTC

 ; Set up pins for Tx/Rx...
 CALL Bank2 ; move to Bank2, for ANSEL
 CLRF ANSEL ; set all pins to digital
 CLRF ANSELH ; set all pins to digital

 ; Set up pins for Input/ Output
 BANKSEL TRISA ; move to Bank1, for TRIS
 MOVLW ConfigA ; load ConfigA
 MOVWF TRISA ; Write PortA I/O
 MOVLW ConfigB ; load ConfigB
 MOVWF TRISB ; Write PortB I/O
 MOVLW ConfigC ; load ConfigC
 MOVWF TRISC ; Write PortC I/O

 ; Initialize timer
 CALL Bank0 ; move to Bank 0 for Timer1 stuff
 CLRF T1CON ; Clear all timer 1 settings
 CLRF TMR1H ; Clear timer1 high byte
 CLRF TMR1L ; Clear timer1 low byte
 BCF T1CON,T1CKPS1 ; set prescaler to 1:8
 BCF T1CON,T1CKPS0 ; ''
 BSF T1CON,TMR1ON ; turn on timer 1, starts to increment
 MOVLW b'00001000' ; Set output compare to
software interrupt
 MOVWF CCP1CON

 ; Initialize SSP
 BANKSEL SSPSTAT ; Bank 1
 CLRF SSPSTAT ; SMP = 0, CKE = 0, and clear status bits
 BANKSEL SSPCON
 MOVLW b'00110010' ; Set up SPI port, Master mode, Fosc/64,
 MOVWF SSPCON ; Write it to register
 BSF PORTC,SDO
 NOP
 BSF PORTB,SCK
 NOP
 BSF PORTC,SS
 BANKSEL TRISC
 BSF TRISB,4 ; SDI
 BCF TRISB,6 ; SCK
 BCF TRISC,6 ; SS
 BCF TRISC,7 ; SDO

 CALL Bank0 ; move to Bank0, ready to go
 CLRF Byte2
 CLRF Byte3

Start:
 BTFSS EnablePort,EnablePin ; we wait until the HC12 says it
 GOTO Start ; wants to read an iButton...

Reset_State:
 ;MOVF SSPBUF,W ; Read SSPBUF to avoid setting overflow flag
 ;MOVF Byte2,W ; For ME218, we care about Byte 2 and Byte 3
 ;MOVWF SSPBUF

 LED_ON
 CALL Wait750ms ;
 LED_OFF
 CALL Wait750ms ;

 CALL Wait490
 CALL SetOUT

 BCF iButton ; pulse line low
 CALL Wait490 ; wait for 500us
 CALL SetIN ; float line
 BSF iButton
 CALL Wait50 ; wait for iButton to respond with presence
 BTFSC iButton ; the line is pulled low here if
 CLRF ACount ; an iButton is present.
However, since the mechanical
 INCF ACount,F ; bounce of the contact lasts
for a while, I make sure
 CALL Wait490 ; that 20 consecutive
presence pulses have been seen
 MOVLW 0xFD ; before moving on!
 ADDWF ACount,W
 BTFSS STATUS,Carry
 GOTO Start

Send_Reset:
 BSF iButton
 CALL SetOUT
 CALL Wait490
 CALL Wait490
 BCF iButton
 CALL Wait490
 BSF iButton
 CALL Wait490

Send0x33:
 CALL SetOUT
 CALL Write1 ; this is the command to ask for the iButton's
 CALL Write1 ; unique ID number
 CALL Write0
 CALL Write0
 CALL Write1
 CALL Write1
 CALL Write0
 CALL Write0
 CALL Wait490

Get8Bytes: ;getting the 8 bytes...
 CALL GetByte ;
 MOVWF Byte1 ; Family Code Byte
 CALL GetByte
 MOVWF Byte2 ; SS Byte 1
 CALL GetByte
 MOVWF Byte3 ; SS Byte 2
 CALL GetByte
 MOVWF Byte4 ; SS Byte 3
 CALL GetByte
 MOVWF Byte5 ; SS Byte 4
 CALL GetByte
 MOVWF Byte6 ; SS Byte 5
 CALL GetByte
 MOVWF Byte7 ; SS Byte 6
 CALL GetByte
 MOVWF Byte8 ; CRC Byte

Send8Bytes:
 BANKSEL SSPSTAT
 BCF SSPSTAT,BF
 BANKSEL PORTA

 SS_LOW
 MOVF SSPBUF,W ; Read SSPBUF to avoid setting overflow flag
 MOVF Byte2,W ; For ME218, we care about Byte 2
 MOVWF SSPBUF
 BANKSEL SSPSTAT
Xmit_Loop2:
 BTFSS SSPSTAT,BF
 GOTO Xmit_Loop2
 BANKSEL PORTA

 SS_HIGH

 CALL Wait70
 SS_LOW
 MOVF SSPBUF,W ; Read SSPBUF to avoid setting overflow flag
 MOVF Byte3,W ; For ME218, we care about Byte 3 also
 MOVWF SSPBUF
 BANKSEL SSPSTAT
Xmit_Loop3:
 BTFSS SSPSTAT,BF
 GOTO Xmit_Loop3
 BANKSEL PORTA
 SS_HIGH

 ; The old janky way to do it
 MOVF Byte1,W ; sending the 8 bytes to the HC12...
 CALL SendByte
 MOVF Byte2,W
 CALL SendByte
 MOVF Byte3,W
 CALL SendByte
 MOVF Byte4,W
 CALL SendByte
 MOVF Byte5,W
 CALL SendByte
 MOVF Byte6,W
 CALL SendByte
 MOVF Byte7,W
 CALL SendByte
 MOVF Byte8,W
 CALL SendByte

Finish:
 CALL Wait750ms ; at the end, we give the HC12 some time to think
 CALL Wait750ms ; and then see if it still needs an ibutton read
 CALL Wait750ms
 CALL Wait750ms
 ;CALL Wait490
 GOTO Start

; ***

SendByte: ; starting with a byte in the W register
 MOVWF TempByte ; we store that value in "TempByte"
 MOVLW 0x08
 MOVWF ACount
SendLoop: ; we loop the following 8 times:
 BTFSS TempByte,0 ; we set the info line to follow the
 BCF InfoPort,InfoPin ; value of the LSB of TempByte
 BTFSC TempByte,0
 BSF InfoPort,InfoPin
 CALL Wait5 ; we wait a little
 BSF ClockPort,ClockPin ; and pulse the clock, signalling the
 Call Wait50 ; HC12 to read
 BCF ClockPort,ClockPin
 Call Wait5
 RRF TempByte,1 ; we then rotate the file to the
right,
 DECFSZ ACount,1 ; placing the next bit in the LSB
spot
 GOTO SendLoop ; and repeat!
 RETURN

; **
GetByte:
 LED_ON
 MOVLW 0x08
 MOVWF ACount
 CLRF TempByte
ByteLoop: ; we loop the following 8 times:

 RRF TempByte,F ; we rotate our result regester to the left
 CALL RW1 ; call the read function, which sets "BitVal"
 BTFSC BitVal,0 ; then read BitVal and change the MSB
 BSF TempByte,7 ; of TempByte accordingly.
 DECFSZ ACount,F
 GOTO ByteLoop ; and do it again!
 MOVF TempByte,W
 LED_OFF
 RETURN
; **

Write0: ; writing zero is just a long low followed by a short hi:
 BCF iButton
 CALL SetOUT
 CALL Wait50
 CALL SetIN
 CALL Wait25
 RETURN

Write1: ; writing one is a short low followed by a long hi:
 BCF iButton
 CALL SetOUT
 CALL Wait5
 CALL SetIN
 CALL Wait70
 RETURN

RW1: ; reading a bit looks like writing a 1, but checking
 CLRF BitVal
 BCF iButton
 CALL SetOUT
 ;LED_ON
 CALL Wait5
 CALL SetIN
 CALL Wait5
 BTFSC iButton
 BSF BitVal,0
 ;LED_OFF
 CALL Wait50
 CALL Wait5
 RETURN

; **
; Bank*
; These routines set the STATUS register with the
; correct bits to move to the desired bank.
;***
Bank0: ; Sets RP1,RP0 = 0,0 so we move to Bank0
 BCF STATUS,RP1
 BCF STATUS,RP0
 RETURN

Bank1: ; Sets RP1,RP0 = 0,1 so we move to Bank1
 BCF STATUS,RP1
 BSF STATUS,RP0
 RETURN

Bank2: ; Sets RP1,RP0 = 1,0 so we move to Bank2
 BSF STATUS,RP1
 BCF STATUS,RP0
 RETURN

Bank3: ; Sets RP1,RP0 = 1,1 so we move to Bank3
 BSF STATUS,RP1
 BSF STATUS,RP0
 RETURN
 ; End of Bank setting functions
;**

SetIN:
 BANKSEL TRISA

 BSF TRISA,ButtonPin
 BANKSEL PORTA
 RETURN

SetOUT:
 BANKSEL TRISA
 BCF TRISA,ButtonPin
 BANKSEL PORTA
 RETURN

; *************************************

Wait750ms:
 BANKSEL T1CON ; move to Bank 0 for Timer1 stuff
 MOVLW 0x10
 MOVWF TCount
 MOVLW 0xFF
 MOVWF CCPR1H
 MOVLW 0xFF
 MOVWF CCPR1L

 CLRF T1CON ; Clear all timer 1 settings
 CLRF TMR1H ; Clear timer1 high byte
 CLRF TMR1L ; Clear timer1 low byte
 BSF T1CON,TMR1ON ; turn on timer 1, starts to increment

Timer_Loop ;BTFSS PIR1,TMR1IF ; Check timer overflow flag
 BTFSS PIR1,CCP1IF ; Check for output compare
flag
 GOTO Timer_Loop ; Loops until the timer compares
 BCF PIR1,CCP1IF ; Reset timer1 CCP flag
 DECFSZ TCount,F ;
 GOTO Timer_Loop ; Loops until the timer compares 50 times
 CLRF T1CON ; Turn off timer1
 RETURN

; ***************************************
Wait490:
 BANKSEL T1CON ; move to Bank 0 for Timer1 stuff
 MOVLW 0x09
 MOVWF CCPR1H
 MOVLW 0xC4
 MOVWF CCPR1L

 CLRF T1CON ; Clear all timer 1 settings
 CLRF TMR1H ; Clear timer1 high byte
 CLRF TMR1L ; Clear timer1 low byte
 BSF T1CON,TMR1ON ; turn on timer 1, starts to increment

Loop490 ;BTFSS PIR1,TMR1IF ; Check timer overflow flag
 BTFSS PIR1,CCP1IF ; Check for output compare
flag
 GOTO Loop490 ; Loops until the timer compares
 BCF PIR1,CCP1IF ; Reset timer1 CCP flag
 CLRF T1CON ; Turn off timer1
 RETURN

; **************************************
Wait50:
 BANKSEL T1CON ; move to Bank 0 for Timer1 stuff
 MOVLW 0x00
 MOVWF CCPR1H
 MOVLW 0xE1 ; 45 * 5 = 225 = 0xE1
 MOVWF CCPR1L

 CLRF T1CON ; Clear all timer 1 settings
 CLRF TMR1H ; Clear timer1 high byte
 CLRF TMR1L ; Clear timer1 low byte
 BSF T1CON,TMR1ON ; turn on timer 1, starts to increment

Loop50: ;BTFSS PIR1,TMR1IF ; Check timer overflow flag

 BTFSS PIR1,CCP1IF ; Check for output compare
flag
 GOTO Loop50 ; Loops until the timer compares
 BCF PIR1,CCP1IF ; Reset timer1 CCP flag
 CLRF T1CON ; Turn off timer1
 RETURN

; ***********************************
Wait5:
 BANKSEL T1CON ; move to Bank 0 for Timer1 stuff
 MOVLW 0x00
 MOVWF CCPR1H
 MOVLW 0x05 ; 1 * 5 = 5 = 0x05
 MOVWF CCPR1L

 CLRF T1CON ; Clear all timer 1 settings
 CLRF TMR1H ; Clear timer1 high byte
 CLRF TMR1L ; Clear timer1 low byte
 BSF T1CON,TMR1ON ; turn on timer 1, starts to increment

Loop5 ;BTFSS PIR1,TMR1IF ; Check timer overflow flag
 BTFSS PIR1,CCP1IF ; Check for output compare
flag
 GOTO Loop5 ; Loops until the timer compares
 BCF PIR1,CCP1IF ; Reset timer1 CCP flag
 CLRF T1CON ; Turn off timer1
 RETURN

; **************************************
Wait70:
 BANKSEL T1CON ; move to Bank 0 for Timer1 stuff
 MOVLW 0x01
 MOVWF CCPR1H
 MOVLW 0x45 ; 65 * 5 = 325 = 0x145
 MOVWF CCPR1L

 CLRF T1CON ; Clear all timer 1 settings
 CLRF TMR1H ; Clear timer1 high byte
 CLRF TMR1L ; Clear timer1 low byte
 BSF T1CON,TMR1ON ; turn on timer 1, starts to increment

Loop70 ;BTFSS PIR1,TMR1IF ; Check timer overflow flag
 BTFSS PIR1,CCP1IF ; Check for output compare
flag
 GOTO Loop70 ; Loops until the timer compares
 BCF PIR1,CCP1IF ; Reset timer1 CCP flag
 CLRF T1CON ; Turn off timer1
 RETURN

; **
Wait25:
 BANKSEL T1CON ; move to Bank 0 for Timer1 stuff
 MOVLW 0x00
 MOVWF CCPR1H
 MOVLW 0x7D ; 25 * 5 = 125 = 0x7D
 MOVWF CCPR1L

 CLRF T1CON ; Clear all timer 1 settings
 CLRF TMR1H ; Clear timer1 high byte
 CLRF TMR1L ; Clear timer1 low byte
 BSF T1CON,TMR1ON ; turn on timer 1, starts to increment

Loop25 ;BTFSS PIR1,TMR1IF ; Check timer overflow flag
 BTFSS PIR1,CCP1IF ; Check for output compare
flag
 GOTO Loop25 ; Loops until the timer compares
 BCF PIR1,CCP1IF ; Reset timer1 CCP flag
 CLRF T1CON ; Turn off timer1
 RETURN

; ******************************

; ***
 end
; ***

